×

Measures admitting extremal extensions. (English) Zbl 0612.28002

For \({\mathfrak A}\subset {\mathfrak B}\) two \(\sigma\)-algebras of subsets of some set \(\Omega\) and \(\mu\) a finite positive measure on \({\mathfrak A}\) we investigate the convex set \(M({\mathfrak B};\mu)\) of measures \(\nu\) on \({\mathfrak B}\) extending \(\mu\). If \(X\subset \Omega\) is an \({\mathfrak A}\)-atom for \({\mathfrak B}\) of full \(\mu\)-measure (i.e \(X\cap {\mathfrak A}=X\cap {\mathfrak B}\) and \(\mu _ *(\complement X)=0),\) it is shown that \(\nu: \nu (B)=\mu ^ *(X\cap B)\) defines an extremal point of \(M({\mathfrak B};\mu.)\) (This is an obvious generalization of a Dirac measure \(\delta _ a\), viz. \(\delta _ a=\mu ^ *(\{a\}\cap \cdot)\) for \(\mu\) the trivial probability on the trivial \(\sigma\)-algebra \({\mathfrak A}=\{\emptyset,\Omega \}.)\) If \({\mathfrak B}\) is a countable extension of \({\mathfrak A}\), each \(\nu \in ex M({\mathfrak B};\mu)\) arises in this way, but in general this is not true. On the other hand it is shown that, in a certain ”dilation” of the measure space, as constructed in the author’s paper in Arch. Math. 43, 434-439 (1984; Zbl 0538.28002), each extremal extension of \(\mu\) is of the above form. By this description it is proved that the set of measures \(\mu\) on \({\mathfrak A}\) admitting extremal extensions generates a band in the vector lattice \(M({\mathfrak A})-M({\mathfrak A})\) of signed measures. \({\mathfrak A}\)-atoms are also used to construct extremal extensions of a given \(\mu\) on \({\mathfrak A}\) to \({\mathfrak B}\) via extremal extensions to intermediate \(\sigma\)-algebras \({\mathfrak B}':\) \({\mathfrak A}\subset {\mathfrak B}'\subset {\mathfrak B}\).

MSC:

28A12 Contents, measures, outer measures, capacities

Citations:

Zbl 0538.28002
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Ascherl andJ. Lehn, Two principles for extending probability measures. Manuscripta Math.21, 43-50 (1977). · Zbl 0368.60005 · doi:10.1007/BF01176900
[2] D. Bierlein, Über die Fortsetzung von Wahrscheinlichkeitsfeldern. Z. Wahrsch. Verw. Gebiete1, 28-46 (1962). · Zbl 0109.10601 · doi:10.1007/BF00531770
[3] R. G. Douglas, On extremal measures and subspace density. Michigan Math. J.11, 243-246 (1964). · Zbl 0121.33102 · doi:10.1307/mmj/1028999137
[4] M. P. Ersov, Second disintegration of measures. Institutsbericht Nr.135, Math. Inst. Linz, Austria (1979).
[5] W. Hackenbroch, Dilated sections and extremal preimage measures. Arch. Math.43, 434-439 (1984). · Zbl 0538.28002 · doi:10.1007/BF01193852
[6] A. Hanen etJ. Neveu, Atomes conditionnels d’un espace de probabilité. Acta Math. Acad. Sci. Hung.17, 443-449 (1966). · Zbl 0144.39601 · doi:10.1007/BF01894889
[7] J. Lembcke, On simultaneous preimage measures on Hausdorff spaces. LNM945, 112-115, Berlin-Heidelberg-New York 1982. · Zbl 0495.28005
[8] Z. Lipecki andD. Plachky, On monogenic operators and measures. Proc. Amer. Math. Soc.82, 216-220 (1981). · Zbl 0474.28001 · doi:10.1090/S0002-9939-1981-0609654-6
[9] J. Neveu, Atomes conditionnels d’espaces de probabilité et théorie de l’information. LNM31, 256-271 Berlin-Heidelberg-New York 1967.
[10] D. Plachky, Extremal and monogenic additive set functions. Proc. Amer. Math. Soc.54, 193-196 (1976). · Zbl 0285.28005 · doi:10.1090/S0002-9939-1976-0419711-3
[11] W.Stich, Maßfortsetzungen und Integration nichtmeßbarer Funktionen. Dissertation, Regensburg 1983. · Zbl 0536.28004
[12] W. Stich, Integralwertmengen bei Maßfortsetzungen. Arch. Math.37, 523-527 (1981). · Zbl 0477.28001 · doi:10.1007/BF01234390
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.