Oswald, P. On a priori estimates for positive solutions of a semilinear biharmonic equation in a ball. (English) Zbl 0612.35055 Commentat. Math. Univ. Carol. 26, 565-577 (1985). This work deals with positive radial symmetric solutions of the homogeneous Dirichlet problem for a semilinear biharmonic equation \[ \Delta^ 2u=g(u)\quad in\quad \Omega,\quad u=\partial u/\partial n=0\quad at\quad \partial \Omega, \] where \(\Omega\) is the unit ball. Some a priori \(L^{\infty}\) estimates are established and then existence theorems are proved. Reviewer: G.Gudmundsdottir Cited in 4 ReviewsCited in 14 Documents MSC: 35J65 Nonlinear boundary value problems for linear elliptic equations 35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs 35B45 A priori estimates in context of PDEs 35A30 Geometric theory, characteristics, transformations in context of PDEs 35A05 General existence and uniqueness theorems (PDE) (MSC2000) Keywords:positive radial symmetric; homogeneous Dirichlet problem; semilinear biharmonic equation; a priori; existence PDF BibTeX XML Cite \textit{P. Oswald}, Commentat. Math. Univ. Carol. 26, 565--577 (1985; Zbl 0612.35055) Full Text: EuDML