×

Espaces symétriques et méthode de Kashiwara-Vergne. (Symmetric spaces and the Kashiwara-Vergne method). (French) Zbl 0612.43012

The author studies a class of symmetric spaces G/H for which the exponential mapping transforms convolution of invariant distributions into convolution on the tangent space at the origin. This holds, e.g., if G is solvable. On such spaces, invariant differential operators have an invariant fundamental solution, and harmonic analysis reduces to the usual Fourier transform on the tangent space.
Reviewer: P.Godin

MSC:

43A85 Harmonic analysis on homogeneous spaces
58J70 Invariance and symmetry properties for PDEs on manifolds
53C35 Differential geometry of symmetric spaces

References:

[1] Y. BENOIST , Sur l’algèbre des opérateurs différentiels invariants sur un espace symétrique nilpotent (C.R. Acad. Sc., Paris, vol. 295, 1982 , p. 59-62). MR 84k:17009 | Zbl 0501.17005 · Zbl 0501.17005
[2] Y. BENOIST , Analyse harmonique sur les espaces symétriques nilpotents (J. Funct. Anal., vol. 59, 1984 , p. 211-253). MR 86i:22014 | Zbl 0555.43012 · Zbl 0555.43012 · doi:10.1016/0022-1236(84)90073-9
[3] M. DUFLO , Opérateurs différentiels bi-invariants sur un groupe de Lie , (Ann. E.N.S., vol. 10, 1977 , p. 265-288). Numdam | MR 56 #3188 | Zbl 0353.22009 · Zbl 0353.22009
[4] M. DUFLO , Opérateurs différentiels invariants sur un espace symétrique (C.R. Acad. Sc., Paris, vol. 289, 1979 , p. 135-137). MR 82e:58104 | Zbl 0419.43012 · Zbl 0419.43012
[5] J. J. DUISTERMAAT , J. A. C. KOLK et V. S. VARADARAJAN , Spectra of compact locally symmetric manifolds of negative curvature (Invent. Math., vol. 52, 1979 , p. 27-93). MR 82a:58050a | Zbl 0434.58019 · Zbl 0434.58019 · doi:10.1007/BF01389856
[6] S. HELGASON , Fundamental solutions of invariant differential operators on symmetric spaces (Amer. J. Math., vol. 86, 1964 , p. 565-601). MR 29 #2323 | Zbl 0178.17001 · Zbl 0178.17001 · doi:10.2307/2373024
[7] S. HELGASON , Differential geometry, Lie groups, and symmetric spaces , Academic Press, New York, 1978 . MR 80k:53081 | Zbl 0451.53038 · Zbl 0451.53038
[8] S. HELGASON , Groups and geometric analysis , Acad. Press, New York, 1984 . MR 86c:22017 | Zbl 0543.58001 · Zbl 0543.58001
[9] M. KASHIWARA et M. VERGNE , The Campbell-Hausdorff formula and invariant hyperfunctions (Invent. Math., vol. 47, 1978 , p. 249-272). MR 58 #11232 | Zbl 0404.22012 · Zbl 0404.22012 · doi:10.1007/BF01579213
[10] G. LION , Résolubilité d’opérateurs différentiels semi-invariants sur l’espace d’une représentation induite (C.R. Acad. Sc., Paris, vol. 300, 1985 , p. 535-538). MR 86f:58164 | Zbl 0587.58053 · Zbl 0587.58053
[11] O. LOOS , Symmetric spaces-1 ; Benjamin, New York, 1969 . MR 39 #365a | Zbl 0175.48601 · Zbl 0175.48601
[12] M. RAÏS , Solutions élémentaires des opérateurs différentiels bi-invariants sur un groupe de Lie nilpotent (C.R. Acad. Sc., Paris, vol. 273, 1971 , p. 495-498). MR 44 #6908 | Zbl 0236.46047 · Zbl 0236.46047
[13] F. ROUVIÈRE , Démonstration de la conjecture de Kashiwara-Vergne pour l’algèbre sl(2) (C.R. Acad. Sc., Paris, vol. 292, 1981 , p. 657-660). MR 82m:17001 | Zbl 0467.22011 · Zbl 0467.22011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.