Kipnis, C. Fluctuations des temps d’occupation d’un site dans l’exclusion simple symétrique. (Fluctuations in the occupation time of a site in simple symmetric exclusion). (French) Zbl 0612.60094 Ann. Inst. Henri Poincaré, Probab. Stat. 23, 21-35 (1987). It is proved that in the simple symmetric exclusion process the fluctuations of the occupation time of a site, properly renormalized, converge to a normal random variable. The normalizing function turns out to be the same as in the case without interaction. The proof is based on a central limit theorem for martingales. Reviewer: M.Mürmann Cited in 1 ReviewCited in 8 Documents MSC: 60K35 Interacting random processes; statistical mechanics type models; percolation theory 60F05 Central limit and other weak theorems Keywords:infinite particle system; simple symmetric exclusion process; fluctuations of the occupation time; central limit theorem for martingales PDF BibTeX XML Cite \textit{C. Kipnis}, Ann. Inst. Henri Poincaré, Probab. Stat. 23, 21--35 (1987; Zbl 0612.60094) Full Text: Numdam EuDML