Verdi, C. On the numerical approach to a two-phase Stefan problem with nonlinear flux. (English) Zbl 0612.65084 Calcolo 22, 351-381 (1985). A multidimensional two-phase Stefan problem is treated. The convergence of some numerical algorithms based on the Crandall-Liggett formula and the non-linear Chernoff formula is studied. Several numerical results which illustrate the theoretical observations are given. Reviewer: N.Praagman Cited in 10 Documents MSC: 65Z05 Applications to the sciences 65N22 Numerical solution of discretized equations for boundary value problems involving PDEs 35K20 Initial-boundary value problems for second-order parabolic equations 80A17 Thermodynamics of continua 35R35 Free boundary problems for PDEs 65H10 Numerical computation of solutions to systems of equations Keywords:Gauss-Seidel; numerical example; two-phase Stefan problem; convergence; Crandall-Liggett formula; Chernoff formula PDF BibTeX XML Cite \textit{C. Verdi}, Calcolo 22, 351--381 (1985; Zbl 0612.65084) Full Text: DOI References: [1] R. Alexander, P. Manselli, K. Miller,Moving finite elements for the Stefan problem in two dimensions, Rend. Acc. Naz. Lincei, 67, 2o (1979), 57–61. · Zbl 0493.65068 [2] H. W. Alt, S. Luckhaus,Quasi-linear elliptic-parabolic differential equations, Math. Z., 183 (1983), 311–341. · Zbl 0508.35046 [3] D. R. Atthey,A finite difference scheme for melting problems, J. Inst. Math. Appl., 13 (1974), 353–366. [4] Ph. Benilan,Solutions intégrales d’équations d’évolution dans un espace de Banach, C. R. Acad. Sci. Paris, 274 (1972), 47–50. · Zbl 0246.47068 [5] Ph. Benilan,Equations d’évolution dans un espace de Banach quelconque et applications, Thèse, Orsay (1972). · Zbl 0246.47068 [6] A. E. Berger, H. Brezis, J. C. W. Rogers,A numerical method for solving the problem u t f(u)=0, R.A.I.R.O. Anal. Numér., 13 (1979), 297–312. [7] C. M. Brauner, M. Fremond, B. Nikolaenko,A new homographic approximation to multiphase Stefan problem, inFree boundary problems: theory and applications, (1983), (A. Fasano, M. Primicerio Eds.), Res. Notes in Math. n. 79, Pitman, London, 365–379. [8] H. Brezis, A. Pazy,Convergence and approximation of semigroups of non-linear operators in Banach spaces, J. Funct. Anal., 9 (1972), 63–74. · Zbl 0231.47036 [9] H. Brezis, W. A. Strauss,Semi-linear second-order elliptic equations in L 1, J. Math. Soc. Japan, 25 (1973), 565–590. · Zbl 0278.35041 [10] F. Brezzi,A survey on the theoretical and numerical trends in non-linear analysis, III S.A.F.A., Bari (1978). [11] L. A. Caffarelli, L. C. Evans,Continuity of the temperature in the two-phase Stefan problem, Arch. Rational Mech. Appl., 81 (1983), 199–220. · Zbl 0516.35080 [12] J. R. Cannon, E. Di Benedetto,An n-dimensional Stefan problem with non-linear boundary conditions, SIAM J. Math. Anal., 11 (1980), 632–645. · Zbl 0459.35090 [13] P. G. Ciarlet,The finite element method for elliptic problems, (1978), North-Holland, Amsterdam. · Zbl 0383.65058 [14] J. F. Ciavaldini,Analyse numérique d’un problème de Stefan a deux phases par une méthode d’éléments finis, SIAM J. Numer. Anal., 12 (1975), 464–487. · Zbl 0272.65101 [15] M. G. Crandall, T. Liggett,Generation of semi-groups of non-linear transformations on general Banach spaces, Amer. J. Math., 93 (1971), 265–298. · Zbl 0226.47038 [16] M. G. Crandall, A. Pazy,Non-linear evolution equations in Banach spaces, Israel J. Math., 11 (1972), 57–94. · Zbl 0249.34049 [17] A. Damlamian,Some results in the multiphase Stefan problem, Comm. Partial Differential Equations, 10 (1977), 1017–1044. · Zbl 0399.35054 [18] E. Di Benedetto,Continuity of weak-solutions to certain singular parabolic equations, Ann. Mat. Pura Appl. IV, 130 (1982), 131–176. · Zbl 0503.35018 [19] J. Douglas, T. Dupont,Galerkin methods for parabolic equations with non-linear boundary conditions, Numer. Math., 20 (1973), 213–237. · Zbl 0234.65096 [20] J. F. Epperson,An error estimate for changing the Stefan problem, SIAM J. Numer. Anal., 19 (1982), 114–120. · Zbl 0481.65076 [21] L. C. Evans,Application of non-linear semigroup theory to certain partial differential equations, inNonlinear evolution equations, (1978), (M. G. Crandall Ed.), Academic Press, New York, 163–188. [22] A. Fasano, M. Primicerio,Il problema di Stefan con condizioni al contorno non lineari, Ann. Scuola Norm. Sup. Pisa, 26 (1972), 711–737. · Zbl 0245.35048 [23] A. Friedman,The Stefan problem in several space variables, Trans. Amer. Math. Soc., 133 (1968), 51–87. · Zbl 0162.41903 [24] R. Glowinski, J. L. Lions, R. Tremolieres,Numerical analysis of variational inequalities, (1976), North-Holland, Amsterdam. · Zbl 0463.65046 [25] C. Hsien Li,A finite-element front-tracking enthalpy method for Stefan problems, IMA J. Numer. Anal., 3 (1983), 87–108. · Zbl 0582.65086 [26] J. W. Jerome,Approximation of nonlinear evolution systems, (1983), Academic Press, New York. · Zbl 0512.35001 [27] J. W. Jerome M. Rose,Error estimates for the multidimensional two-phase Stefan problem, Math. Comp., 39 (1982), 377–414. · Zbl 0505.65060 [28] S. L. Kamenomostskaja,On the Stefan Problem, Naucn. Dokl. Vyss. Skoly, 1 (1958), 60–62. · Zbl 0143.13901 [29] O. Ladyzenskaja, N. Ural’ceva,Linear and quasi-linear equations of elliptic type, (1968), Academic Press, New York. [30] C. Le,Dérivabilité d’un sémi-groupe engendré par un opérateur m-accrétif de L 1 ({\(\Omega\)}) et accrétif dans L ({\(\Omega\)}), C. R. Acad. Sci. Paris, 283 (1976), 469–472. [31] J. L. Lions,Quelques méthodes de résolution des problèmes aux limites non linéaires, (1969), Dunod. G.-V., Paris. [32] M. Luskin,A Galerkin method for non-linear parabolic equations with non-linear boundary conditions, SIAM J. Numer. Anal., 16 (1979), 284–299. · Zbl 0405.65059 [33] E. Magenes,Problemi di Stefan bifase in più variabili spaziali, V.S.A.F.A., Catania, Le Matematiche, XXXVI (1981), 65–108. [34] E. Magenes, C. Verdi, A. Visintin,Semigroup approach to the Stefan problem with non-linear flux, Rend. Acc. Naz. Lincei, 75, 20 (1983), 24–33. · Zbl 0562.35089 [35] G. H. Meyer,Multidimensional Stefan problems, SIAM J. Numer. Anal., 10 (1973), 522–538. · Zbl 0256.65054 [36] K. Miller, R. J. Gelinas, S. K. Doss,The moving finite element method: applications to general partial differential equations with multiple large-gradients, J. Comput. Phys., 40 (1981), 202–249. · Zbl 0482.65061 [37] M. Niezgodka, I. Pawlow,A generalized Stefan problem in several space variables, Appl. Math. Optim., 9 (1983), 193–224. · Zbl 0519.35079 [38] R. Nochetto,Aproximacion numérica del problema de Stefan multidimensional a dos fases por el metodo de regularizacion, Tesis en Ciencias Matematicas, Univ. Buenos Aires, (1983). [39] R. Nochetto,Error estimates for two-phase Stefan problems in several space variables, I: linear boundary conditions, To appear in Calcolo. · Zbl 0606.65084 [40] R. Nochetto,Error estimates for two-phase Stefan problems in several space variables, II: non-linear flux conditions, To appear in Calcolo. · Zbl 0606.65085 [41] O. A. Oleinik,A method of solution of the general Stefan problem, Soviet. Math. Dokl., 1 (1960), 1350–1354. [42] J. M. Ortega, W. C. Rheinboldt,Iterative solution of non-linear equations in several variables, (1970), Academic Press, New York. · Zbl 0241.65046 [43] I. Pawlow,Approximation of an evolution variational inequality arising from free boundary problems, inOptimal control of PDEs, (1983), (K. H. Hoffmann, W. Krabs Eds.), Birkhäuser Ver., Basel. · Zbl 0506.35062 [44] M. Primicerio,Problemi di diffusione a frontiera libera, Boll. Un. Mat. Ital. A (5), 18 (1981), 11–68> · Zbl 0468.35082 [45] C. Verdi,Sull’analisi numerica di un problema di Stefan a due fasi con flusso non lineare, Tesi di Laurea in Matematica, Univ. Pavia, (1980). [46] A. Visintin,Sur le problème de Stefan avec flux non linéaire, Boll. Un. Mat. Ital. C(5), 18 (1981), 63–86. · Zbl 0471.35078 [47] R. E. White,An enthalpy formulation of the Stefan problem, SIAM J. Numer. Anal., 19 (1982), 1129–1157. · Zbl 0501.65058 [48] R. E. White,A numerical solution of the enthalpy formulation of the Stefan problem, SIAM J. Numer. Anal., 19 (1982), 1158–1172. · Zbl 0501.65059 [49] R. E. White,A modified finite difference scheme for the Stefan problem, Math. Comp., 41 (1983), 337–347. · Zbl 0533.65079 [50] M. Zlamal,A finite element solution of the non-linear heat equations, R.A.I.R.O. Anal. Numér., 14 (1980), 203–216. · Zbl 0442.65103 [51] Ph. Benilan,Opérateurs accrétifs et sémi-groupes dans les espaces L p (1), inFunctional analysis and numerical analysis, (1978), (H. Fujita Ed.), Japan Society Promotion Sciences, 15–53. [52] E. Magenes, C. Verdi,On the semigroup approach to the two-phase Stefan problem with non-linear flux conditions, inFree boundary problems: theory and applications, (1985), (A. Bossavit, A. Damlamian, M. Frémond Eds.), Res. Notes in Math. n. 120, Pitman, London, 28–39. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.