zbMATH — the first resource for mathematics

Ideal representation of Reed-Solomon and Reed-Muller codes. (English. Russian original) Zbl 1286.94104
Algebra Logic 51, No. 3, 195-212 (2012); translation from Algebra Logika 51, No. 3, 297-320 (2012).
Summary: Reed-Solomon codes and Reed-Muller codes are represented as ideals of the group ring \(S = QH\) of an elementary abelian \(p\)-group \(H\) over a finite field \(Q=\mathbb{F}_q\) of characteristic \(p\). Such representations for these codes are already known. Our technique differs from the previously used method in the following. There, the codes in question were represented as kernels of some homomorphisms; in other words, these were defined by some kind of parity-check relations. Here, we explicitly specify generators for the ideals presenting the codes. In this case Reed-Muller codes are obtained by applying the trace function to some sums of one-dimensional subspaces of \(_{Q } S\) in a fixed set of \(q\) such subspaces, whose sums also present Reed-Solomon codes.

94B15 Cyclic codes
Full Text: DOI
[1] E. F. Assmus, Jr. and J. D. Key, ”Polynomial codes and finite geometries,” in Handbook of Coding Theory, Vol. 1, Pt. 1, Algebraic Coding, V. S. Pless and W. Cary Huffman (eds.), Elsevier, Amsterdam (1998), pp. 1269-1343. · Zbl 0980.94038
[2] P. Charpin, ”Les codes de Reed–Solomon en tant qu’ideáux d’une algèbre modulaire,” C. R. Acad. Sci. Paris., Sér. I, Math., 294, 597-600 (1982). · Zbl 0491.94018
[3] P. Charpin, ”Une description des codes de Reed–Solomon dans une algèbre modulaire,” C. R. Acad. Sci. Paris., Sér. I, Math., 299, 779-782 (1984). · Zbl 0564.94008
[4] P. Landrock and O. Manz, ”Classical codes as ideals in group algebras,” Des., Codes Crypt., 2, No. 3, 273-285 (1992). · Zbl 0763.94019
[5] E. Couselo, S. González, V. Markov, C. Martinez, and A. Nechaev, ”Some constructions of linearly optimal group codes,” Lin. Alg. Appl., 433, No. 2, 356-364 (2010). · Zbl 1191.94109
[6] R. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Wiley, New York (1962). · Zbl 0131.25601
[7] J. Lambeck, Lectures on Rings and Modules, Blaisdell, London (1966).
[8] W. Heise and P. Quattrocchi, Informations- und Codierungstheorie, Springer, Berlin (1995). · Zbl 0516.94013
[9] J. H. van Lint, Introduction to Coding Theory, Grad. Texts Math., 86, Springer, New York (1982). · Zbl 0485.94015
[10] F. J. MacWilliams and N. J. Sloane, The Theory of Error-Correcting Codes, North Holland Mathematical Library, 16, Elsevier (1988). · Zbl 0369.94008
[11] V. N. Sachkov, Combinatorial Methods in Discrete Mathematics [in Russian], Nauka, Moscow (1982). · Zbl 0629.05001
[12] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, Mass. (1983).
[13] M. M. Glukhov, V. P. Elizarov, and A. A. Nechaev, Algebra [in Russian], Vol. 2, Gelios ARV, Moscow (2003).
[14] S. D. Berman, ”On the theory of group codes,” Kibernetika, 3, 31-39 (1967). · Zbl 0189.51201
[15] P. Charpin, ”Codes idéaux de certaines alg‘ebres modulaires,” Thèse de 3ème cycle, Univ. Paris VII (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.