×

Thom series of contact singularities. (English) Zbl 1264.32023

In this well-written paper the authors develop a general method to compute Thom polynomials. A Thom polynomial \(\text{Tp}(\eta)\) of a set of points \(\eta(F)\) with a certain kind of singularity \(\eta\) in the source manifold of a holomorphic map \(F: N\to P\) is a multivariate polynomial depending only on \(\eta\) such that the cohomology class of the closure of \(\eta(F)\) is the specialisation of \(\text{Tp}(\eta)\) at the characteristic classes \(c_i(N)\), \(F^*(c_i(P))\). It can be considered as \(\mathrm{GL}(n)\times \mathrm{GL}(p)\)-equivariant cohomology class. A contact class of singularities is specified by an Artinian algebra \(\mathcal Q\) and two integers \(n\) and \(p\). For fixed \(\mathcal Q\) the Thom polynomials \(\text{Tp}_{\mathcal Q}(n,p)\) can be organised into a formal power series in infinitely many variables.
The method of computation is based on the ideas in the paper of G. Bérczi and A. Szenes [Ann. Math. (2) 175, No. 2, 567–629 (2012; Zbl 1247.58021)]. It uses a version of the Berline-Vergne-Atiyah-Bott equivariant localisation formula, for an equivariant cohomology class on the total space of a vector bundle over a compact singular base space. In this case the vector bundle is obtained by a partial resolution of contact invariant subvarieties of \(J^k(n,p)\), originally due to J. Damon. The form of the localisation formula implies different stabilisation properties of Thom polynomials, including the \(d\)-stability property of Thom series. The input of the formula for a fixed \(\mathcal Q\) is a finite set of Euler classes inside a Grassmannian. But the Euler classes in question are difficult to calculate directly. One of the strategies of this paper is to use the localisation formula backwards. In this way new Thom series are computed, but there are still many open problems, some of them listed at the end of the paper, like what is the Thom series of \(A_n\) for \(n>6\).

MSC:

32S20 Global theory of complex singularities; cohomological properties
58K30 Global theory of singularities
58K65 Topological invariants on manifolds

Citations:

Zbl 1247.58021

References:

[1] M. F. Atiyah and R. Bott, ”The moment map and equivariant cohomology,” Topology, vol. 23, iss. 1, pp. 1-28, 1984. · Zbl 0521.58025 · doi:10.1016/0040-9383(84)90021-1
[2] V. I. Arnold, V. A. Vasil’ev, V. V. Goryunov, and O. V. Lyashko, Singularity Theory I. Local and Global Theory. Dynamical Systems. VI., New York: Springer-Verlag, 1993, vol. 6. · Zbl 0786.00006
[3] G. Bérczi, L. M. Fehér, and R. Rimányi, ”Expressions for resultants coming from the global theory of singularities,” in Topics in Algebraic and Noncommutative Geometry, Providence, RI: Amer. Math. Soc., 2003, vol. 324, pp. 63-69. · Zbl 1052.57043 · doi:10.1090/conm/324/05730
[4] A. Borel and A. Haefliger, ”La classe d’homologie fondamentale d’un espace analytique,” Bull. Soc. Math. France, vol. 89, pp. 461-513, 1961. · Zbl 0102.38502
[5] G. Bérczi and A. Szenes, ”Thom polynomials of Morin singularities,” Ann. of Math., vol. 175, iss. 2, pp. 567-629, 2012. · Zbl 1247.58021 · doi:10.4007/annals.2012.175.2.4
[6] W. Y. C. Chen and J. D. Louck, ”Interpolation for symmetric functions,” Adv. Math., vol. 117, iss. 1, pp. 147-156, 1996. · Zbl 0857.05092 · doi:10.1006/aima.1996.0004
[7] J. N. Damon, Thom polynomials for contact class singularities, 1972.
[8] M. Domokos, L. M. Fehér, and R. Rimányi, Equivariant and invariant theory of nets of conics with an application to Thom polynomials, 2011. · Zbl 1295.58012
[9] J. Damon and A. Galligo, ”A topological invariant for stable map germs,” Invent. Math., vol. 32, iss. 2, pp. 103-132, 1976. · Zbl 0333.57017 · doi:10.1007/BF01389958
[10] D. Edidin and W. Graham, ”Characteristic classes in the Chow ring,” J. Algebraic Geom., vol. 6, iss. 3, pp. 431-443, 1997. · Zbl 0922.14003
[11] L. M. Fehér and B. Kömüves, ”On second order Thom-Boardman singularities,” Fund. Math., vol. 191, iss. 3, pp. 249-264, 2006. · Zbl 1127.58036 · doi:10.4064/fm191-3-4
[12] L. M. Fehér, A. Némethi, and R. Rimányi, ”Degeneracy of 2-forms and 3-forms,” Canad. Math. Bull., vol. 48, iss. 4, pp. 547-560, 2005. · Zbl 1087.58012 · doi:10.4153/CMB-2005-050-9
[13] L. M. Fehér, A. Némethi, and R. Rimányi, ”Coincident root loci of binary forms,” Michigan Math. J., vol. 54, iss. 2, pp. 375-392, 2006. · Zbl 1115.14046 · doi:10.1307/mmj/1156345601
[14] L. M. Fehér and Z. Patakfalvi, ”The incidence class and the hierarchy of orbits,” Cent. Eur. J. Math., vol. 7, iss. 3, pp. 429-441, 2009. · Zbl 1184.32008 · doi:10.2478/s11533-009-0026-3
[15] L.  M. Fehér and R. Rimányi, ”On the structure of Thom polynomials of singularities,” Bull. London Math. Soc., vol. 39, pp. 541-549, 2007. · Zbl 1140.32019 · doi:10.1112/blms/bdm023
[16] W. Fulton, Equivariant cohomology in algebraic geometry. · Zbl 0611.14012
[17] W. Fulton, Young Tableaux. With Applications to Representation Theory and Geometry, Cambridge: Cambridge Univ. Press, 1997, vol. 35. · Zbl 0878.14034 · doi:10.1017/CBO9780511626241
[18] T. Gaffney, Properties of finitely determined germs, 1975.
[19] T. Gaffney, ”Multiple points, chaining and Hilbert schemes,” Amer. J. Math., vol. 110, iss. 4, pp. 595-628, 1988. · Zbl 0671.14001 · doi:10.2307/2374643
[20] R. A. Gustafson and S. C. Milne, ”Schur functions, Good’s identity, and hypergeometric series well poised in \({ SU}(n)\),” Adv. in Math., vol. 48, iss. 2, pp. 177-188, 1983. · Zbl 0516.33015 · doi:10.1016/0001-8708(83)90088-9
[21] J. Harris, Algebraic Geometry-A First Course, New York: Springer-Verlag, 1992, vol. 133. · Zbl 0779.14001
[22] J. Harris and L. W. Tu, ”On symmetric and skew-symmetric determinantal varieties,” Topology, vol. 23, iss. 1, pp. 71-84, 1984. · Zbl 0534.55010 · doi:10.1016/0040-9383(84)90026-0
[23] A. Iarrobino, ”Punctual Hilbert schemes,” Bull. Amer. Math. Soc., vol. 78, pp. 819-823, 1972. · Zbl 0267.14005 · doi:10.1090/S0002-9904-1972-13049-0
[24] A. Iarrobino, ”Reducibility of the families of \(0\)-dimensional schemes on a variety,” Invent. Math., vol. 15, pp. 72-77, 1972. · Zbl 0227.14006 · doi:10.1007/BF01418644
[25] T. Józefiak, A. Lascoux, and P. Pragacz, ”Classes of determinantal varieties associated with symmetric and skew-symmetric matrices,” Izv. Akad. Nauk SSSR Ser. Mat., vol. 45, iss. 3, pp. 662-673, 1981. · Zbl 0471.14028
[26] M. É. Kazarian, Gysin homomorphism and degeneracies.
[27] M. É. Kazarian, Non-associative Hilbert scheme and Thom polynomials.
[28] M. É. Kazarian, ”Characteristic classes of singularity theory,” in The Arnold-Gelfand Mathematical Seminars, Boston, MA: Birkhäuser, 1997, pp. 325-340. · Zbl 0872.57034
[29] M. É. Kazarian, ”Multisingularities, cobordisms, and enumerative geometry,” Uspekhi Mat. Nauk, vol. 58, iss. 4(352), pp. 29-88, 2003. · Zbl 1062.58039 · doi:10.1070/RM2003v058n04ABEH000642
[30] A. Knutson and M. Shimozono, Kempf collapsing and quiver loci, 2006.
[31] A. Lascoux, ”Degree of the dual of a Grassmann variety,” Comm. Algebra, vol. 9, iss. 11, pp. 1215-1225, 1981. · Zbl 0462.14017 · doi:10.1080/00927878108822641
[32] D. Laksov, A. Lascoux, and A. Thorup, ”On Giambelli’s theorem on complete correlations,” Acta Math., vol. 162, iss. 3-4, pp. 143-199, 1989. · Zbl 0695.14023 · doi:10.1007/BF02392836
[33] A. Lascoux and P. Pragacz, ”Thom polynomials and Schur functions: the singularities \(A_3(-)\),” Publ. Res. Inst. Math. Sci., vol. 46, iss. 1, pp. 183-200, 2010. · Zbl 1277.05166 · doi:10.2977/PRIMS/5
[34] I. G. Macdonald, Symmetric Functions and Orthogonal Polynomials, Providence, RI: Amer. Math. Soc., 1998, vol. 12. · Zbl 0887.05053
[35] J. N. Mather, ”Stability of \(C^{\infty }\) mappings. IV. Classification of stable germs by \(R\)-algebras,” Inst. Hautes Études Sci. Publ. Math., vol. 37, pp. 223-248, 1969. · Zbl 0202.55102 · doi:10.1007/BF02684889
[36] J. N. Mather, ”Stability of \(C^{\infty }\) mappings. V. Transversality,” Advances in Math., vol. 4, pp. 301-336 (1970), 1970. · Zbl 0207.54303 · doi:10.1016/0001-8708(70)90028-9
[37] J. N. Mather, ”On Thom-Boardman singularities,” in Dynamical Systems, New York: Academic Press, 1973, pp. 233-248. · Zbl 0292.58004
[38] &. Öztürk, ”Thom polynomials and Schur functions: the singularities \({ III}_{2,3}(-)\),” Ann. Polon. Math., vol. 99, iss. 3, pp. 295-304, 2010. · Zbl 1226.05250 · doi:10.4064/ap99-3-6
[39] P. Pragacz, ”Enumerative geometry of degeneracy loci,” Ann. Sci. École Norm. Sup., vol. 21, iss. 3, pp. 413-454, 1988. · Zbl 0687.14043
[40] P. Pragacz, ”Symmetric polynomials and divided differences in formulas of intersection theory,” in Parameter Spaces, Warsaw: Polish Acad. Sci., 1996, vol. 36, pp. 125-177. · Zbl 0851.05094
[41] P. Pragacz, Thom polynomials and Schur functions I, 2005. · Zbl 1157.58015
[42] P. Pragacz, ”Thom polynomials and Schur functions: the singularities \(I_{2,2}(-)\),” Ann. Inst. Fourier \((\)Grenoble\()\), vol. 57, iss. 5, pp. 1487-1508, 2007. · Zbl 1126.05099 · doi:10.5802/aif.2302
[43] P. Pragacz and A. Weber, ”Positivity of Schur function expansions of Thom polynomials,” Fund. Math., vol. 195, iss. 1, pp. 85-95, 2007. · Zbl 1146.05049 · doi:10.4064/fm195-1-3
[44] M. Reineke, ”Quivers, desingularizations and canonical bases,” in Studies in Memory of Issai Schur, Boston, MA: Birkhäuser, 2003, vol. 210, pp. 325-344. · Zbl 1078.16010
[45] R. Rimányi, ”Thom polynomials, symmetries and incidences of singularities,” Invent. Math., vol. 143, iss. 3, pp. 499-521, 2001. · Zbl 0985.32012 · doi:10.1007/s002220000113
[46] F. Ronga, ”Le calcul des classes duales aux singularités de Boardman d’ordre deux,” Comment. Math. Helv., vol. 47, pp. 15-35, 1972. · Zbl 0236.58003 · doi:10.1007/BF02566786
[47] A. Szenes, ”Iterated residues and multiple Bernoulli polynomials,” Internat. Math. Res. Notices, vol. 1998, p. no. 18, 937-956. · Zbl 0968.11015 · doi:10.1155/S1073792898000567
[48] C. T. C. Wall, ”Nets of conics,” Math. Proc. Cambridge Philos. Soc., vol. 81, iss. 3, pp. 351-364, 1977. · Zbl 0351.14032 · doi:10.1017/S0305004100053421
[49] C. T. C. Wall, ”Finite determinacy of smooth map-germs,” Bull. London Math. Soc., vol. 13, iss. 6, pp. 481-539, 1981. · Zbl 0451.58009 · doi:10.1112/blms/13.6.481
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.