The weighted fundamental lemma. II: Cohomological statements. (Le lemme fondamental pondéré. II: Énoncés cohomologiques.) (French. English summary) Zbl 1264.11043

In this article the authors continue the presentation of their proof of Arthur’s weighted fundamental lemma. The subject is, first of all, the study of the perverse cohomology of the truncated Hitchin fibration introduced in the preceding article [Compos. Math. 146, 1416–1506 (2010; Zbl 1206.14026)]. One important result is the “support theorem”: on a certain open subset \({\mathcal A}^{bon}\) of the base \({\mathcal A}\) of the fibration the perverse cohomology sheaves are direct sums of perverse extensions of local systems on open subsets of \({\mathcal A}^{bon}\cap {\mathcal A}^{ell}\), where \({\mathcal A}^{ell}\) is the elliptic part of \(\mathcal A\). The main cohomological result relates the perverse cohomology of the truncated Hitchin fibration for \(G\) to that for endoscopic groups of \(G\). By the support theorem the proof is reduced to Ngô’s theorem on the elliptic part of the cohomology, see B. C. Ngô’s article [Publ. Math. IHES 111, 1–169 (2010; Zbl 1200.22011)], where the ordinary fundamental lemma is proved.
By computations of the trace of the Frobenius action on the perverse cohomology sheaves using the Grothendieck-Lefschetz trace formula, a global form of the weighted fundamental lemma is proved. From this global result the local lemma is deduced.
In the present article the reductive groups are assumed to be split. The authors promise to treat the general case later.


11F72 Spectral theory; trace formulas (e.g., that of Selberg)
11F70 Representation-theoretic methods; automorphic representations over local and global fields
Full Text: DOI arXiv


[1] J. Arthur, ”The characters of discrete series as orbital integrals,” Invent. Math., vol. 32, iss. 3, pp. 205-261, 1976. · Zbl 0359.22008
[2] J. Arthur, ”The invariant trace formula. I. Local theory,” J. Amer. Math. Soc., vol. 1, iss. 2, pp. 323-383, 1988. · Zbl 0682.10021
[3] J. Arthur, ”On the transfer of distributions: weighted orbital integrals,” Duke Math. J., vol. 99, iss. 2, pp. 209-283, 1999. · Zbl 0938.22019
[4] J. Arthur, ”A stable trace formula. I. General expansions,” J. Inst. Math. Jussieu, vol. 1, iss. 2, pp. 175-277, 2002. · Zbl 1040.11038
[5] A. Beauville and Y. Laszlo, ”Un lemme de descente,” C. R. Acad. Sci. Paris Sér. I Math., vol. 320, iss. 3, pp. 335-340, 1995. · Zbl 0852.13005
[6] A. A. Beuilinson, J. Bernstein, and P. Deligne, ”Faisceaux pervers,” in Analysis and Topology on Singular Spaces, I, Paris: Soc. Math. France, 1982, vol. 100, pp. 5-171. · Zbl 0536.14011
[7] R. Bezrukavnikov, ”The dimension of the fixed point set on affine flag manifolds,” Math. Res. Lett., vol. 3, iss. 2, pp. 185-189, 1996. · Zbl 0874.20033
[8] I. Biswas and S. Ramanan, ”An infinitesimal study of the moduli of Hitchin pairs,” J. London Math. Soc., vol. 49, iss. 2, pp. 219-231, 1994. · Zbl 0819.58007
[9] N. Bourbaki, Éléments de Mathématique. Fasc. XXXIV. Groupes et Algèbres de Lie. Chapitre IV: Groupes de Coxeter et Systèmes de Tits. Chapitre V: Groupes Engendrés par des Réflexions. Chapitre VI: Systèmes de Racines, Paris: Hermann, 1968, vol. 1337. · Zbl 0186.33001
[10] P. Chaudouard and G. Laumon, ”Le lemme fondamental pondéré. I. Constructions géométriques,” Compos. Math., vol. 146, iss. 6, pp. 1416-1506, 2010. · Zbl 1206.14026
[11] P. Chaudouard and G. Laumon, ”Sur l’homologie des fibres de Springer affines tronquées,” Duke Math. J., vol. 145, iss. 3, pp. 443-535, 2008. · Zbl 1206.11065
[12] R. Y. Donagi and D. Gaitsgory, ”The gerbe of Higgs bundles,” Transform. Groups, vol. 7, iss. 2, pp. 109-153, 2002. · Zbl 1083.14519
[13] R. Elkik, ”Solutions d’équations à coefficients dans un anneau hensélien,” Ann. Sci. École Norm. Sup., vol. 6, pp. 553-603 (1974), 1973. · Zbl 0327.14001
[14] M. Goresky, R. Kottwitz, and R. Macpherson, ”Homology of affine Springer fibers in the unramified case,” Duke Math. J., vol. 121, iss. 3, pp. 509-561, 2004. · Zbl 1162.14311
[15] A. Grothendieck, ”Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I,” Inst. Hautes Études Sci. Publ. Math., vol. 11, pp. 5-167, 1961. · Zbl 0118.36206
[16] A. Grothendieck, ”Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III,” Inst. Hautes Études Sci. Publ. Math., vol. 28, pp. 5-248, 1966. · Zbl 0144.19904
[17] A. Grothendieck, ”Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV,” Inst. Hautes Études Sci. Publ. Math., vol. 32, pp. 5-361, 1967. · Zbl 0153.22301
[18] T. C. Hales, ”A simple definition of transfer factors for unramified groups,” in Representation Theory of Groups and Algebras, Providence, RI: Amer. Math. Soc., 1993, vol. 145, pp. 109-134. · Zbl 0828.22015
[19] J. Heinloth, ”Uniformization of \(\mathcalG\)-bundles,” Math. Ann., vol. 347, iss. 3, pp. 499-528, 2010. · Zbl 1193.14014
[20] L. Illusie, Complexe Cotangent et Déformations. I, New York: Springer-Verlag, 1971, vol. 239. · Zbl 0224.13014
[21] D. Kazhdan and G. Lusztig, ”Fixed point varieties on affine flag manifolds,” Israel J. Math., vol. 62, iss. 2, pp. 129-168, 1988. · Zbl 0658.22005
[22] R. E. Kottwitz, ”Isocrystals with additional structure,” Compositio Math., vol. 56, iss. 2, pp. 201-220, 1985. · Zbl 0597.20038
[23] R. E. Kottwitz, ”Base change for unit elements of Hecke algebras,” Compositio Math., vol. 60, iss. 2, pp. 237-250, 1986.
[24] R. E. Kottwitz, ”Isocrystals with additional structure. II,” Compositio Math., vol. 109, iss. 3, pp. 255-339, 1997. · Zbl 0966.20022
[25] R. E. Kottwitz, ”Transfer factors for Lie algebras,” Represent. Theory, vol. 3, pp. 127-138, 1999. · Zbl 1044.22011
[26] R. P. Langlands and D. Shelstad, ”On the definition of transfer factors,” Math. Ann., vol. 278, iss. 1-4, pp. 219-271, 1987. · Zbl 0644.22005
[27] G. Laumon and B. C. Ngô, ”Le lemme fondamental pour les groupes unitaires,” Ann. of Math., vol. 168, iss. 2, pp. 477-573, 2008. · Zbl 1179.22019
[28] B. C. Ngô, ”Fibration de Hitchin et endoscopie,” Invent. Math., vol. 164, iss. 2, pp. 399-453, 2006. · Zbl 1098.14023
[29] B. C. Ngô, ”Le lemme fondamental pour les algèbres de Lie,” Publ. Math. Inst. Hautes Études Sci., iss. 111, pp. 1-169, 2010. · Zbl 1200.22011
[30] J. -L. Waldspurger, ”Le lemme fondamental implique le transfert,” Compositio Math., vol. 105, iss. 2, pp. 153-236, 1997. · Zbl 0871.22005
[31] J. -L. Waldspurger, ”À propos du lemme fondamental pondéré tordu,” Math. Ann., vol. 343, iss. 1, pp. 103-174, 2009. · Zbl 1158.22011
[32] J. Waldspurger, ”Endoscopie et changement de caractéristique: intégrales orbitales pondérées,” Ann. Inst. Fourier \((\)Grenoble\()\), vol. 59, iss. 5, pp. 1753-1818, 2009. · Zbl 1184.22003
[33] D. Whitehouse, ”The twisted weighted fundamental lemma for the transfer of automorphic forms from \( GSp(4)\),” in Formes Automorphes. II. Le cas du Groupe \({G}Sp(4)\), Paris: Soc. Math. France, 2005, vol. 302, pp. 291-436. · Zbl 1097.11025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.