×

zbMATH — the first resource for mathematics

Identification and functional annotation of genome-wide ER-regulated genes in breast cancer based on ChIP-Seq data. (English) Zbl 1254.92041
Summary: Estrogen receptor (ER) is a crucial molecule symbol of breast cancer. Molecular interactions between ER complexes and DNA regulate the expression of genes responsible for cancer cell phenotypes. However, the positions and mechanisms of the ER binding with downstream gene targets are far from being fully understood. ChIP-Seq is an important assay for the genome-wide study of protein-DNA interactions. In this paper, we explored the genome-wide chromatin localization of ER-DNA binding regions by analyzing ChIP-Seq data from MCF-7 breast cancer cell lines. By integrating three peak detection algorithms and two data sets, we localized 933 ER binding sites, 92% among which were located far away from promoters, suggesting long-range control by ER. Moreover, 489 genes in the vicinity of ER binding sites were identified as estrogen response elements by comparison with expression data. In addition, 836 single nucleotide polymorphisms (SNPs) in or near 157 ER-regulated genes were found in the vicinity of ER binding sites. Furthermore, we annotated the function of the nearest-neighbor genes of these binding sites using Gene Ontology (GO), KEGG, and GeneGo pathway data bases. The results revealed novel ER-regulated genes pathways for further experimental validation. ER was found to affect every developed stage of breast cancer by regulating genes related to the development, progression, and metastasis. This study provides a deeper understanding of the regulatory mechanisms of ER and its associated genes.
MSC:
92C50 Medical applications (general)
92C40 Biochemistry, molecular biology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. J. van de Vijver, Y. D. He, L. J. van’T Veer et al., “A gene-expression signature as a predictor of survival in breast cancer,” The New England Journal of Medicine, vol. 347, no. 25, pp. 1999-2009, 2002. · doi:10.1056/NEJMoa021967
[2] M. A. Lopez-Garcia, F. C. Geyer, M. Lacroix-Triki, C. Marchió, and J. S. Reis-Filho, “Breast cancer precursors revisited: molecular features and progression pathways,” Histopathology, vol. 57, no. 2, pp. 171-192, 2010. · doi:10.1111/j.1365-2559.2010.03568.x
[3] W. F. Anderson, N. Chatterjee, W. B. Ershler, and O. W. Brawley, “Estrogen receptor breast cancer phenotypes in the surveillance, epidemiology, and end results database,” Breast Cancer Research and Treatment, vol. 76, no. 1, pp. 27-36, 2002. · doi:10.1023/A:1020299707510
[4] S. Mandal and J. R. Davie, “An integrated analysis of genes and pathways exhibiting metabolic differences between estrogen receptor positive breast cancer cells,” BMC Cancer, vol. 7, article 181, 2007. · doi:10.1186/1471-2407-7-181
[5] M. C. Abba, Y. Hu, H. Sun et al., “Gene expression signature of estrogen receptor \alpha status in breast cancer,” BMC Genomics, vol. 6, no. 1, article 37, 2005. · doi:10.1186/1471-2164-6-37
[6] M. Hu, J. Yu, J. M. G. Taylor, A. M. Chinnaiyan, and Z. S. Qin, “On the detection and refinement of transcription factor binding sites using ChIP-Seq data,” Nucleic Acids Research, vol. 38, no. 7, Article ID gkp1180, pp. 2154-2167, 2010. · doi:10.1093/nar/gkp1180
[7] W. J. Welboren, M. A. van Driel, E. M. Janssen-Megens et al., “ChIP-Seq of ER\alpha and RNA polymerase II defines genes differentially responding to ligands,” EMBO Journal, vol. 28, no. 10, pp. 1418-1428, 2009. · doi:10.1038/emboj.2009.88
[8] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast and memory-efficient alignment of short DNA sequences to the human genome,” Genome Biology, vol. 10, no. 3, article R25, 2009. · doi:10.1186/gb-2009-10-3-r25
[9] A. P. Fejes, G. Robertson, M. Bilenky, R. Varhol, M. Bainbridge, and S. J. M. Jones, “FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology,” Bioinformatics, vol. 24, no. 15, pp. 1729-1730, 2008. · Zbl 05511637 · doi:10.1093/bioinformatics/btn305
[10] A. P. Boyle, J. Guinney, G. E. Crawford, and T. S. Furey, “F-Seq: a feature density estimator for high-throughput sequence tags,” Bioinformatics, vol. 24, no. 21, pp. 2537-2538, 2008. · Zbl 05511716 · doi:10.1093/bioinformatics/btn480
[11] H. Ji, H. Jiang, W. Ma, D. S. Johnson, R. M. Myers, and W. H. Wong, “An integrated software system for analyzing ChIP-chip and ChIP-seq data,” Nature Biotechnology, vol. 26, no. 11, pp. 1293-1300, 2008. · doi:10.1038/nbt.1505
[12] Y. Zhang, T. Liu, C. A. Meyer et al., “Model-based analysis of ChIP-Seq (MACS),” Genome Biology, vol. 9, no. 9, article R137, 2008. · doi:10.1186/gb-2008-9-9-r137
[13] R. Jothi, S. Cuddapah, A. Barski, K. Cui, and K. Zhao, “Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data,” Nucleic Acids Research, vol. 36, no. 16, pp. 5221-5231, 2008. · doi:10.1093/nar/gkn488
[14] A. Valouev, D. S. Johnson, A. Sundquist et al., “Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data,” Nature Methods, vol. 5, no. 9, pp. 829-834, 2008. · doi:10.1038/nmeth.1246
[15] R. Redon, S. Ishikawa, K. R. Fitch et al., “Global variation in copy number in the human genome,” Nature, vol. 444, no. 7118, pp. 444-454, 2006. · doi:10.1038/nature05329
[16] T. L. Bailey and C. Elkan, “Fitting a mixture model by expectation maximization to discover motifs in biopolymers,” in Proceedings of the International Conference on Intelligent Systems for Molecular Biology, vol. 2, pp. 28-36, 1994.
[17] J. Li and R. Tibshirani, “Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data,” Statistical Methods in Medical Research. In press. · doi:10.1177/0962280211428386
[18] V. G. Tusher, R. Tibshirani, and G. Chu, “Significance analysis of microarrays applied to the ionizing radiation response,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 9, pp. 5116-5121, 2001. · Zbl 1012.92014 · doi:10.1073/pnas.091062498 · www.pnas.org
[19] S. T. Sherry, M. H. Ward, M. Kholodov et al., “DbSNP: the NCBI database of genetic variation,” Nucleic Acids Research, vol. 29, no. 1, pp. 308-311, 2001.
[20] M. Ashburner, C. A. Ball, J. A. Blake et al., “Gene ontology: tool for the unification of biology,” Nature Genetics, vol. 25, no. 1, pp. 25-29, 2000. · doi:10.1038/75556
[21] M. Kanehisa and S. Goto, “KEGG: kyoto encyclopedia of genes and genomes,” Nucleic Acids Research, vol. 28, no. 1, pp. 27-30, 2000.
[22] B. Zhang, D. Schmoyer, S. Kirov, and J. Snoddy, “GOTree Machine (GOTM): a web-based platform for interpreting sets of interesting genes using gene ontology hierarchies,” BMC Bioinformatics, vol. 5, article 16, 2004. · doi:10.1186/1471-2105-5-16
[23] B. Zhang, S. Kirov, and J. Snoddy, “WebGestalt: an integrated system for exploring gene sets in various biological contexts,” Nucleic Acids Research, vol. 33, no. 2, pp. W741-W748, 2005. · Zbl 05437629 · doi:10.1093/nar/gki475
[24] K. Graham, X. Ge, A. de Las Morenas, A. Tripathi, and C. L. Rosenberg, “Gene expression profiles of estrogen receptor-positive and estrogen receptor-negative breast cancers are detectable in histologically normal breast epithelium,” Clinical Cancer Research, vol. 17, no. 2, pp. 236-246, 2011. · doi:10.1158/1078-0432.CCR-10-1369
[25] Y. Wang, J. G. M. Klijn, Y. Zhang et al., “Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer,” The Lancet, vol. 365, no. 9460, pp. 671-679, 2005. · doi:10.1016/S0140-6736(05)17947-1
[26] B. Lu, X. Liang, G. K. Scott et al., “Polyamine inhibition of estrogen receptor (ER) DNA-binding and ligand-binding functions,” Breast Cancer Research and Treatment, vol. 48, no. 3, pp. 243-257, 1998. · doi:10.1023/A:1005949319064
[27] C. Y. Lin, V. B. Vega, J. S. Thomsen et al., “Whole-genome cartography of estrogen receptor \alpha binding sites,” PLoS Genetics, vol. 3, no. 6, article e87, 2007. · doi:10.1371/journal.pgen.0030087
[28] A. Beeghly-Fadiel, W. Zheng, W. Lu, et al., “Replication study for reported SNP associations with breast cancer survival,” Journal of Cancer Research and Clinical Oncology, vol. 138, no. 6, pp. 1019-1026, 2012. · doi:10.1007/s00432-012-1174-6
[29] W. Han, K. Y. Kim, S. J. Yang, D. Y. Noh, D. Kang, and K. Kwack, “SNP-SNP interactions between DNA repair genes were associated with breast cancer risk in a Korean population,” Cancer, vol. 118, no. 3, pp. 594-602, 2012. · doi:10.1002/cncr.26220
[30] C. H. Yang, L. Y. Chuang, Y. J. Chen, H. F. Tseng, and H. W. Chang, “Computational analysis of simulated SNP interactions between 26 growth factor-related genes in a breast cancer association study,” OMICS A Journal of Integrative Biology, vol. 15, no. 6, pp. 399-407, 2011. · doi:10.1089/omi.2010.0028
[31] K. D. Graves, B. N. Peshkin, G. Luta, W. Tuong, and M. D. Schwartz, “Interest in genetic testing for modest changes in breast cancer risk: implicationsfor SNP testing,” Public Health Genomics, vol. 14, no. 3, pp. 178-189, 2011. · doi:10.1159/000324703
[32] R. J. Hartmaier, S. Tchatchou, A. S. Richter et al., “Nuclear receptor coregulator SNP discovery and impact on breast cancer risk,” BMC Cancer, vol. 9, article 438, 2009. · doi:10.1186/1471-2407-9-438
[33] A. L. Lark, C. A. Livasy, L. Dressler et al., “High focal adhesion kinase expression in invasive breast carcinomas is associated with an aggressive phenotype,” Modern Pathology, vol. 18, no. 10, pp. 1289-1294, 2005. · doi:10.1038/modpathol.3800424
[34] A. S. Oh, L. A. Lorant, J. N. Holloway, D. L. Miller, F. G. Kern, and D. El-Ashry, “Hyperactivation of MAPK induces loss of ER\alpha expression in breast cancer cells,” Molecular Endocrinology, vol. 15, no. 8, pp. 1344-1359, 2001. · doi:10.1210/me.15.8.1344
[35] H. Cam, H. Griesmann, M. Beitzinger et al., “p53 family members in myogenic differentiation and rhabdomyosarcoma development,” Cancer Cell, vol. 10, no. 4, pp. 281-293, 2006. · doi:10.1016/j.ccr.2006.08.024
[36] M. P. DeYoung, C. M. Johannessen, C. O. Leong, W. Faquin, J. W. Rocco, and L. W. Ellisen, “Tumor-specific p73 up-regulation mediates p63 dependence in squamous cell carcinoma,” Cancer Research, vol. 66, no. 19, pp. 9362-9368, 2006. · doi:10.1158/0008-5472.CAN-06-1619
[37] G. Dominguez, J. M. Silva, J. Silva et al., “Wild type p73 overexpression and high-grade malignancy in breast cancer,” Breast Cancer Research and Treatment, vol. 66, no. 3, pp. 183-190, 2001. · doi:10.1023/A:1010624717311
[38] A. Chédotal, “Chemotropic axon guidance molecules in tumorigenesis,” Progress in Experimental Tumor Research, vol. 39, pp. 78-90, 2007. · doi:10.1159/0000100048
[39] H. Yamaguchi and J. Condeelis, “Regulation of the actin cytoskeleton in cancer cell migration and invasion,” Biochimica et Biophysica Acta, vol. 1773, no. 5, pp. 642-652, 2007. · doi:10.1016/j.bbamcr.2006.07.001
[40] K. McHale, J. E. Tomaszewski, R. Puthiyaveettil, V. A. Livolsi, and C. V. Clevenger, “Altered expression of prolactin receptor-associated signaling proteins in human breast carcinoma,” Modern Pathology, vol. 21, no. 5, pp. 565-571, 2008. · doi:10.1038/modpathol.2008.7
[41] P. Moutsatsou and A. G. Papavassiliou, “The glucocorticoid receptor signalling in breast cancer: breast carcinoma,” Journal of Cellular and Molecular Medicine, vol. 12, no. 1, pp. 145-163, 2008. · doi:10.1111/j.1582-4934.2007.00177.x
[42] V. Pelekanou, M. Kampa, M. Kafousi et al., “Expression of TNF-superfamily members BAFF and APRIL in breast cancer: immunohistochemical study in 52 invasive ductal breast carcinomas,” BMC Cancer, vol. 8, article 76, 2008. · doi:10.1186/1471-2407-8-76
[43] G. F. Weber, F. C. Gaertner, W. Erl et al., “IL-22-mediated tumor growth reduction correlates with inhibition of ERK1/2 and AKT phosphorylation and induction of cell cycle arrest in the G 2-M phase,” Journal of Immunology, vol. 177, no. 11, pp. 8266-8272, 2006.
[44] J. S. Carroll, X. S. Liu, A. S. Brodsky et al., “Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1,” Cell, vol. 122, no. 1, pp. 33-43, 2005. · doi:10.1016/j.cell.2005.05.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.