×

zbMATH — the first resource for mathematics

Atomistic phenomena in dense fluid shock waves. (English) Zbl 1255.76066
Summary: The shock structure problem is one of the classical problems of fluid mechanics and at least for non-reacting dilute gases it has been considered essentially solved. Here we present a few recent findings, to show that this is not the case. There are still new physical effects to be discovered provided that the numerical technique is general enough to not rule them out a priori. While the results have been obtained for dense fluids, some of the effects might also be observable for shocks in dilute gases.

MSC:
76L05 Shock waves and blast waves in fluid mechanics
Software:
Moldy
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Rankine, W.V.M.: On the thermodynamic theory of waves of finite longitudinal disturbance. Philos. Trans. R. Soc. Lond. 160, 277–288 (1870) · JFM 02.0832.01 · doi:10.1098/rstl.1870.0015
[2] Rayleigh. Aerial plane waves of finite amplitude. Proc. R. Soc. Lond. A 84(570), 247–284 (1910) · JFM 41.0846.02
[3] Taylor, G.I.: The conditions necessary for discontinuous motion in gases. Proc. R. Soc. Lond. A 84(571), 371–377 (1910) · JFM 41.0846.01 · doi:10.1098/rspa.1910.0081
[4] Bird, G.A.: Approach to translational equilibrium in a rigid sphere gas. Phys. Fluids 6(10), 1518–1519 (1963) · doi:10.1063/1.1710976
[5] Bird, G.A.: Shock wave structure in a rigid sphere gas. In: de Leeuw, J.H.(eds) Rarefied Gas Dynamics. vol. I, pp. 216–222. Academic Press, New York (1965)
[6] Bird, G.A.: Direct simulation and the Boltzmann equation. Phys. Fluids 13(11), 2676–2681 (1970) · Zbl 0227.76111 · doi:10.1063/1.1692849
[7] Alder, B.J., Wainwright, T.E.: Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208–1209 (1957) · doi:10.1063/1.1743957
[8] Hoover, W.G.: Structure of shock wave front in a liquid. Phys. Rev. Lett. 42(23), 1531–1534 (1979) · doi:10.1103/PhysRevLett.42.1531
[9] Holian, B.L., Hoover, W.G., Moran, B., Straub, G.K.: Shock-wave structure via non-equilibrium molecular-dynamics and Navier-Stokes continuum mechanics. Phys. Rev. A 22(6), 2798–2808 (1980) · doi:10.1103/PhysRevA.22.2798
[10] Schlamp, S., Hathorn, B.C.: Molecular alignment in a shock wave. Phys. Fluids 18(9), 096101 (2006) · Zbl 1255.76066 · doi:10.1063/1.2333692
[11] Schlamp, S., Hathorn, B.C.: Higher moments of the velocity distribution function in dense-gas shocks. J. Comput. Phys. 223(1), 305–315 (2007) · Zbl 1163.76387 · doi:10.1016/j.jcp.2006.09.020
[12] Schlamp, S., Hathorn, B.C.: Incomplete molecular chaos within dense-fluid shock waves. Phys. Rev. E 76, 026314 (2007) · Zbl 1163.76387 · doi:10.1103/PhysRevE.76.026314
[13] Schlamp, S.: Shock wave structure in dense argon and nitrogen–molecular dynamics simulations of moving shock waves. Habilitation thesis, Switzerland (2007)
[14] Tsai, D.H., Trevino, S.F.: Thermal relaxation in a dense liquid under shock compression. Phys. Rev. A 24(5), 2743–2757 (1981) · doi:10.1103/PhysRevA.24.2743
[15] Salomons, E., Mareschal, M.: Usefulness of the Burnett description of strong shock waves. Phys. Rev. Lett. 69(2), 269–272 (1992) · doi:10.1103/PhysRevLett.69.269
[16] Kum, O., Hoover, W.G., Hoover, C.G.: Temperature maxima in stable two-dimensional shock waves. Phys. Rev. E 56(1), 462–465 (1997) · doi:10.1103/PhysRevE.56.462
[17] Macpherson, A.K.: Formation of shock waves in a dense gas using a molecular–dynamics type technique. J. Fluid Mech. 45, 601–621 (1971) · Zbl 0213.53101 · doi:10.1017/S0022112071000223
[18] Horowitz, J., Woo, M., Greber, I.: Molecular dynamics simulation of a piston–driven shock wave. Phy. Fluids (Gallery of Fluid Motion) 7(9), S6 (1995)
[19] Woo, M., Greber, I.: Molecular dynamics simulation of piston–driven shock wave in hard sphere gas. AIAA J. 37(2), 215–221 (1999) · doi:10.2514/2.692
[20] Tokumasu, T., Matsumoto, Y.: Dynamic molecular collision (DMC) model for rarefied gas flow simulations by the DSMC method. Phys. Fluids 11(7), 1907–1920 (1999) · Zbl 1147.76515 · doi:10.1063/1.870053
[21] Refson, K.: Moldy: A portable molecular dynamics simulation program for serial and parallel computers. Comput. Phys. Commun. 126(3), 310–329 (2000) · Zbl 1040.81501 · doi:10.1016/S0010-4655(99)00496-8
[22] Murthy, C.S., O’Shea, S.F., McDonald, I.R.: Electrostatic interactions in molecular crystals–lattics dynamics of solid nitrogen and carbon dioxide. Mol. Phys. 50(3), 531–541 (1983) · doi:10.1080/00268978300102531
[23] Linzer, M., Hornig, D.F.: Structure in shock fronts in argon and nitrogen. Phys. Fluids 6(12), 1661 (1963) · doi:10.1063/1.1711007
[24] Montanero, J.M., de Haro, M.L., Santos, A., Garzo, V.: Simple and accurate theory for strong shock waves in a dense hard-sphere fluid. Phys. Rev. E 60(6), 7592–7595 (1999) · doi:10.1103/PhysRevE.60.7592
[25] Holway, L.H.: Temperature overshoots in shock waves. Phys. Fluids 8(10), 1905–1906 (1965) · doi:10.1063/1.1761127
[26] Yen, S.M.: Temperature overshoot in shock waves. Phys. Fluids 9(7), 1417–1418 (1966) · doi:10.1063/1.1761862
[27] Phamvan Diep, G.C., Erwin, D.A., Muntz, E.P.: Nonequilibrium molecular motion in a hypersonic shock wave. Science 245, 624–626 (1989) · doi:10.1126/science.245.4918.624
[28] Schmidt, B.: Electron beam density measurements in shock waves in argon. J. Fluid Mech. 39, 361–373 (1969) · doi:10.1017/S0022112069002229
[29] Hicks, B.L., Yen, S.M., Reilly, B.J.: The internal structure of shock waves. J. Fluid Mech. 53, 85–111 (1972) · Zbl 0242.76040 · doi:10.1017/S0022112072000059
[30] Elliott, J.P.: Validity of Navier-Stokes relation in a shock–wave. Can. J. Phys. 53(6), 583–586 (1975) · doi:10.1139/p75-073
[31] Teschke, O., de Souza, E.F.: Water molecule clusters measured at water/air interfaces using atomic force microscopy. Phys. Chem. Chem. Phys. 7(22), 3856–3865 (2005) · doi:10.1039/b511257e
[32] Gaines, G.L.: Insoluble Monolayers at the Liquid–Gas Interfaces. Interscience, New York (1966)
[33] Li, M., Acero, A.A., Huang, Z., Rice, S.A.: Formation of an ordered Langmuir monolayer by a non-polar chain molecule. Nature 367(6459), 151–153 (1994) · doi:10.1038/367151a0
[34] Dill, K.A., Flory, P.J.: Molecular organization in micelles and vesicles. Proc. Nat. Acad. Sci. USA Part 1: Phys. Sci. 78(2), 676–680 (1981) · doi:10.1073/pnas.78.2.676
[35] Collings, P.J., Hird, M.: Introduction to Liquid Crystals: Chemistry and Physics. Taylor & Francis, London (1997)
[36] Cercignani, C.: The Boltzmann Equation and its Applications. Springer, New York (1988) · Zbl 0646.76001
[37] Evans, D.J., Cohen, E.G.D.: Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71(15), 2401–2404 (1993) · Zbl 0966.82507 · doi:10.1103/PhysRevLett.71.2401
[38] Green, M.S.: Brownian motion in a gas of noninteracting molecules. J. Chem. Phys. 19(8), 1036–1046 (1951) · doi:10.1063/1.1748449
[39] Green, M.S.: Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 22(3), 398–413 (1954) · doi:10.1063/1.1740082
[40] Kubo, R.: Statistical-mechanics theory of irreversible processes. 1. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12(6), 570–586 (1957) · doi:10.1143/JPSJ.12.570
[41] Green, M.S.: Comment on a paper of Mori on time-correlation expressions for transport properties. Phys. Rev. 119(3), 829–830 (1960) · Zbl 0089.45205 · doi:10.1103/PhysRev.119.829
[42] Cohen, E.G.D.: Kinetic theory of non–equilibrium fluids. Physica A 118(1–3), 17–42 (1983) · Zbl 0518.76062 · doi:10.1016/0378-4371(83)90174-7
[43] Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949) · Zbl 0037.13104 · doi:10.1002/cpa.3160020403
[44] Tsuge, S.: On the breakdown of the molecular chaos in the presence of translational nonequilibrium. Phys. Lett. A 36(3), 249–250 (1971) · doi:10.1016/0375-9601(71)90445-2
[45] Erpenbeck, J.: Shear viscosity of the hard-sphere fluid via nonequilibrium molecular dynamics. Phys. Rev. Lett. 52(15), 1333–1335 (1984) · doi:10.1103/PhysRevLett.52.1333
[46] Lutsko, J.F.: Molecular chaos, pair correlations, and shear-induced ordering of hard spheres. Phys. Rev. Lett. 77(11), 2225–2228 (1996) · doi:10.1103/PhysRevLett.77.2225
[47] Pöschel, T., Brilliantov, N.V., Schwager, T.: Violation of molecular chaos in dissipative gases. Int. J. Modern Phys. C 13(9), 1263–1272 (2002) · doi:10.1142/S012918310200411X
[48] Tamosiunas, K., Csernai, L.P., Magas, V.K., Molnar, E., Nyiri, A.: Modelling of Boltzmann transport equation for freeze-out. J. Phys. G–Nuclear Particle Phys. 31(6), S1001–S1004 (2005) · doi:10.1088/0954-3899/31/6/046
[49] Root, S., Hardy, R.J., Swanson, D.R.: Continuum predictions from molecular dynamics simulations: shock waves. J. Chem. Phys. 118(7), 3161–3165 (2002) · doi:10.1063/1.1537243
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.