zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Partitioned algorithms for fluid-structure interaction problems in haemodynamics. (English) Zbl 06127807
Summary: We consider the fluid-structure interaction problem arising in haemodynamic applications. The finite elasticity equations for the vessel are written in Lagrangian form, while the Navier-Stokes equations for the blood in Arbitrary Lagrangian Eulerian form. The resulting three fields problem (fluid/ structure/ fluid domain) is formalized via the introduction of three Lagrange multipliers and consistently discretized by p-th order backward differentiation formulae (BDFp). We focus on partitioned algorithms for its numerical solution, which consist in the successive solution of the three subproblems. We review several strategies that all rely on the exchange of Robin interface conditions and review their performances reported recently in the literature. We also analyze the stability of explicit partitioned procedures and convergence of iterative implicit partitioned procedures on a simple linear FSI problem for a general BDFp temporal discretizations.

65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
76D07Stokes and related (Oseen, etc.) flows
Full Text: DOI
[1] Astorino M., Chouly F., Fernández M.: Robin based semi-implicit coupling in fluidstructure interaction: stability analysis and numerics. SIAM J. Sci. Comp. 31(6), 4041--4065 (2009) · Zbl 1323.74099 · doi:10.1137/090749694
[2] Badia S., Nobile F., Vergara C.: Fluid-structure partitioned procedures based on Robin transmission conditions. J. Comput. Physics 227, 7027--7051 (2008) · Zbl 1140.74010 · doi:10.1016/j.jcp.2008.04.006
[3] S. Badia, F. Nobile, and C. Vergara. Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems. Comput. Methods Appl. Mech. Engrg., 198(33-36):2768--2784, 2009. · Zbl 1228.76079
[4] S. Badia, A. Quaini, and A. Quarteroni. Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect. Comput. Methods Appl. Mech. Engrg., 197:4216--4232, 2008. · Zbl 1194.74058
[5] Badia S., Quaini A., Quarteroni A.: Splitting methods based on algebraic factorization for fluid-structure interaction. SIAM J. Sci. Comp. 30(4), 1778--1805 (2008) · Zbl 05582043 · doi:10.1137/070680497
[6] Y. Bazilevs, V.M. Calo, Y. Zhang, and T.J.R. Hughes. Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Computational Mechanics, 38:310--322, 2006. · Zbl 1161.74020
[7] P. Causin, J.F. Gerbeau, and F. Nobile. Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput. Methods Appl. Mech. Engrg., 194(42- 44):4506--4527, 2005. · Zbl 1101.74027
[8] Degroote J.: Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flow. J. Comput. Physics 230(17), 6399--6403 (2011) · Zbl 1280.74012 · doi:10.1016/j.jcp.2011.05.012
[9] S. Deparis, M. Discacciati, G. Fourestey, and A. Quarteroni. Fluid-structure algorithms based on Steklov-Poincaré operators. Comput. Methods Appl. Mech. Engrg., 195(41- 43):5797--5812, 2006. · Zbl 1124.76026
[10] W.G. Dettmer and D. Perić. On the coupling between fluid flow and mesh motion in the modelling of fluidstructure interaction. Comp. Mech., 43:81--90, 2008.
[11] Donea J.: An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interaction. Comput. Methods Appl. Mech. Engrg. 33, 689--723 (1982) · Zbl 0508.73063 · doi:10.1016/0045-7825(82)90128-1
[12] M.A. Fernández, J.F. Gerbeau, and C. Grandmont. A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Int. J. Num. Methods Engrg., 69(4):794--821, 2007. · Zbl 1194.74393
[13] C. Figueroa, I. Vignon-Clementel, K. Jansen, T. Hughes, and C. Taylor. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Engrg., 195:5685--5706, 2006. · Zbl 1126.76029
[14] L. Formaggia, A. Quarteroni, and A. Veneziani (Eds.). Cardiovascular Mathematics - Modeling and simulation of the circulatory system. Springer, 2009. · Zbl 1300.92005
[15] L. Formaggia and C. Vergara. Prescription of general defective boundary conditions in fluid-dynamics. Milan Journal of Mathematics, 2012. DOI: 10.1007/s00032-012-0185-8 . · Zbl 06127802
[16] Forster C., Wall W., Ramm E.: Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flow. Comput. Methods Appl. Mech. Engrg. 196(7), 1278--1293 (2007) · Zbl 1173.74418 · doi:10.1016/j.cma.2006.09.002
[17] Y.C. Fung. Biomechanics. Mechanical Properties of Living Tissues. Springer, 2nd edition, 1993.
[18] Gander M.J.: Optimized Schwarz methods. SIAM J. Numer. Anal. 44(2), 699--731 (2006) · Zbl 1117.65165 · doi:10.1137/S0036142903425409
[19] L. Gerardo Giorda, F. Nobile, and C. Vergara. Analysis and optimization of Robin- Robin partitioned procedures in fluid-structure interaction problems. SIAM J. Numer. Anal., 48(6):2091--2116, 2010. · Zbl 05931231
[20] E. Hairer, S.P. Nørsett, and G. Wanner. Solving ordinary differential equations: Nonstiff problems. Springer Series in Comput. Math. Springer, 1993. · Zbl 0789.65048
[21] Heil M.: An efficient solver for the fully coupled solution of large-displacement fluidstructure interaction problems. Comput. Methods Appl. Mech. Engrg. 193, 1--23 (2004) · Zbl 1137.74439 · doi:10.1016/j.cma.2003.09.006
[22] M. Heil, A. Hazel, and J. Boyle. Solvers for large-displacement fluidstructure interaction problems: segregated versus monolithic approaches. Comp. Mech., 43(1):91--101, 2008. · Zbl 1309.76126
[23] G.A. Holzapfel, T.C. Gasser, and R.W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity, 61:1--48, 2000. · Zbl 1023.74033
[24] Holzapfel G.A., Ogden R.W.: Constitutive modelling of arteries. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466(2118), 1551--1596 (2010) · Zbl 1228.35239 · doi:10.1098/rspa.2010.0058
[25] T. J. R. Hughes,W. K. Liu, and T. K. Zimmermann. Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Engrg., 29(3):329--349, 1981. · Zbl 0482.76039
[26] C. Kassiotis, A. Ibrahimbegovic, R. Niekamp, and H.Matthies. Nonlinear fluid-structure interaction problem. part i: implicit partitioned algorithm, nonlinear stability proof and validation examples. Comput. Mech., 47:305--323, 2011. · Zbl 05873375
[27] Kirby R.M., Yosibash Z., Karniadakis G.E.: Towards stable coupling methods for high-order discretization of fluid-structure interaction: Algorithms and observations. J. Comput. Physics 223, 489--518 (2007) · Zbl 1183.74060 · doi:10.1016/j.jcp.2006.09.015
[28] U. Kuttler, M. Gee, Ch Forster, A Comerford, and W.A. Wall. Coupling strategies for biomedical fluid-structure interaction problems. Int. J. Num. Methods Biomed. Engrg., 26:305--321, 2010. · Zbl 1183.92008
[29] Kuttler U., Wall W.A.: Fixed-point fluid-structure interaction solvers with dynamic relaxation. Comput. Mech. 43, 61--72 (2008) · Zbl 1236.74284 · doi:10.1007/s00466-008-0255-5
[30] Y. Liu, C. Charles, M. Gracia, H. Gregersen, and G. S. Kassab. Surrounding tissues affect the passive mechanics of the vessel wall: theory and experiment. Am. J. Physiol. Heart Circ. Physiol., 293:H3290--H3300, 2007.
[31] Matthies H.G., Niekamp R., Steindorf J.: Algorithms for strong coupling procedures. Computers & Structures, 195, 2028--2049 (2006) · Zbl 1142.74050
[32] C. Michler, E. H. van Brummelen, and R. de Borst. An interface Newton-Krylov solver for fluid-structure interaction. Int. J. Num. Methods Fluids, 47(10-11):1189--1195, 2005. · Zbl 1069.76033
[33] P. Moireau, N. Xiao, M. Astorino, C. A. Figueroa, D. Chapelle, C. A. Taylor, and J.-F. Gerbeau. External tissue support and fluidstructure simulation in blood flows. Biomechanics and Modeling in Mechanobiology, 11(1-2):1--18, 2012.
[34] F. Nobile, M. Pozzoli, and C. Vergara. Time accurate partitioned algorithms for the solution of fluid-structure interaction problems in haemodynamics. MOX-Report 30- 2011, Department of Mathematics, Politecnico di Milano, Italy, 2011. · Zbl 1290.76166
[35] F. Nobile, M. Pozzoli, and C. Vergara. Exact and inexact partitioned algorithms for fluid-structure interaction problems with finite elasticity in haemodynamics. MOXReport 37-2012, Department of Mathematics, Politecnico di Milano, Italy, 2012. · Zbl 1290.76166
[36] K. Perktold, E. Thurner, and T. Kenner. Flow and stress characteristics in rigid walled and compliant carotid artery bifurcation models. Medical and Biological Engineering and Computing, 32(1):19--26, 1994.
[37] Piperno S., Farhat C.: Design of efficient partitioned procedures for transient solution of aerolastic problems. Rev. Eur. Elements Finis 9(6-7), 655--680 (2000) · Zbl 1003.74081
[38] A. Quarteroni and A. Valli. Numerical approximation of partial differential equations. Springer, 1994. · Zbl 0803.65088
[39] T.E. Tezduyar, S. Sathe, T. Cragin, B. Nanna, B.S. Conklin, J. Pausewang, and M. Schwaab. Modelling of fluid-structure interactions with the space-time finite elements: arterial fluid mechanics. Int. J. Num. Methods Fluids, 54:901--922, 2007. · Zbl 1276.76043
[40] T.E. Tezduyar, S. Sathe, and K. Stein. Solution techniques for the fully discretized equations in computation of fluidstructure interactions with the spacetime formulations. Comput. Methods Appl. Mech. Engrg., 195(41-43):57435753, 2006. · Zbl 1123.76035
[41] Vergara C.: Nitsche’s method for defective boundary value problems in incompressibile fluid-dynamics. J. Sci. Comp. 46(1), 100--123 (2011) · Zbl 1237.65116 · doi:10.1007/s10915-010-9389-7
[42] Wulandana R., Robertson A.M.: An inelastic multi-mechanism constitutive equation for cerebral arterial tissue. Biomechanics and Modeling in Mechanobiology 4(4), 235--248 (2005) · doi:10.1007/s10237-005-0004-z
[43] H. Yang. Partitioned solvers for the fluid-structure interaction problems with a nearly incompressible elasticity model. Comput. Visual. Sci., pages 243--267, 2012.