zbMATH — the first resource for mathematics

Optimal filters from calibration data for image deconvolution with data acquisition error. (English) Zbl 1255.94011
Summary: Data acquisition errors due to dead pixels or other hardware defects can cause undesirable artifacts in imaging applications. Compensating for these defects typically requires knowledge such as a defective pixel map, which can be difficult or costly to obtain and which is not necessarily static. However, recent calibration data is readily available in many applications. In this paper, we compute optimal filters for image deconvolution with denoising using only this calibration data, by minimizing the empirical Bayes risk. We derive a bound on how the reconstruction changes as the number of dead pixels grows. We show that our approach is able to reconstruct missing information better than standard filtering approaches and is robust even in the presence of a large number of defects and to defects that arise after calibration.
Reviewer: Reviewer (Berlin)

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
ForWaRD; na28
Full Text: DOI
[1] Barrett, J.F., Keat, N.: Artifacts in CT: recognition and avoidance. Radiographics 24, 1679–1691 (2004). doi: 10.1148/rg.246045065 · doi:10.1148/rg.246045065
[2] Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: SIGGRAPH’00 Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Technique, pp. 417–424. ACM, New York (2000). doi: 10.1145/344779.344972
[3] Bushberg, J.T., Seibert, J.A., Leidholdt, E.M. Jr., Boone, J.M.: The Essential Physics of Medical Imaging, 2nd edn. Lippincott Williams & Wilkins, Philadelphia (2002)
[4] Chan, T., Kang, S.: Error analysis for image inpainting. J. Math. Imaging Vis. 26(1–2), 85–103 (2006). doi: 10.1007/s10851-006-6865-7 · Zbl 05193682 · doi:10.1007/s10851-006-6865-7
[5] Chan, T., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. SIAM, Philadelphia (2005) · Zbl 1095.68127
[6] Chan, T., Yip, A., Park, F.: Simultaneous total variation image inpainting and blind deconvolution. Int. J. Imaging Syst. Technol. 15(1), 92–102 (2005). doi: 10.1002/ima.20041 · doi:10.1002/ima.20041
[7] Chung, J., Chung, M., O’Leary, D.P.: Designing optimal spectral filters for inverse problems. SIAM J. Sci. Comput. 33(6), 3132–3252 (2011). doi: 10.1137/100812938 · Zbl 1269.65040 · doi:10.1137/100812938
[8] Dahl, J., Hansen, P., Jensen, S., Jensen, T.: Algorithms and software for total variation image reconstruction via first-order methods. Numer. Algorithms 53(1), 67–92 (2010). doi: 10.1007/s11075-009-9310-3 · Zbl 1181.94009 · doi:10.1007/s11075-009-9310-3
[9] Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61. SIAM, Philadelphia (1992) · Zbl 0776.42018
[10] De Vito, E., Rosasco, L., Caponnetto, A., De Giovannini, U., Odone, F.: Learning from examples as an inverse problem. J. Mach. Learn. Res. 6, 883–904 (2005) · Zbl 1222.68180
[11] Golub, G., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2), 215–223 (1979) · Zbl 0461.62059 · doi:10.1080/00401706.1979.10489751
[12] Golub, G., Pereyra, V.: The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate. SIAM J. Numer. Anal. 10(2), 413–432 (1973) · Zbl 0258.65045 · doi:10.1137/0710036
[13] Golub, G.H., Pereyra, V.: Separable nonlinear least squares: the variable projection method and its applications. Inverse Probl. 19(2), R1–R26 (2003). doi: 10.1088/0266-5611/19/2/201 · Zbl 1022.65014 · doi:10.1088/0266-5611/19/2/201
[14] Hainaut, O.: Basic image processing (1996). http://www.eso.org/\(\sim\)ohainaut/ccd
[15] Hansen, P.C., Nagy, J., O’Leary, D.P.: Deblurring Images: Matrices, Spectra, and Filtering. SIAM, Philadelphia (2006) · Zbl 1112.68127
[16] Neelamani, R., Choi, H., Baraniuk, R.: ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems. IEEE Trans. Signal Process. 52(2), 418–433 (2004) · Zbl 1369.94238 · doi:10.1109/TSP.2003.821103
[17] Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (1999) · Zbl 0930.65067
[18] Nowak, R., Thul, M.: Wavelet-vaguelette restoration in photon-limited imaging. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, 1998, vol. 5, pp. 2869–2872. IEEE Comput. Soc., Los Alamitos (1998). doi: 10.1109/ICASSP.1998.678124
[19] Pusey, E., Lufkin, R., Brown, R., Solomon, M., Stark, D., Tarr, R., Hanafee, W.: Magnetic resonance imaging artifacts: mechanism and clinical significance. Radiographics 6(5), 891–911 (1986)
[20] Raven, C.: Numerical removal of ring artifacts in microtomography. Rev. Sci. Instrum. 69(8), 2978–2980 (1998). doi: 10.1063/1.1149043 · doi:10.1063/1.1149043
[21] Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998) · Zbl 0935.62007
[22] Whitmore, B., Wiggs, M.: Charge transfer traps in the WFPC2. In: Koratkar, A., Leitherer, C. (eds.) Calibrating HST: Post Servicing Mission, STScI Calibration Workshop 1, Conf. Proceedings. Space Telescope Science Institute, Baltimore (1995). http://www.stsci.edu/hst/wfpc2/documents/isr/9503_1.html
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.