zbMATH — the first resource for mathematics

Implicitly weighted methods in robust image analysis. (English) Zbl 1255.68243
Summary: This paper is devoted to highly robust statistical methods with applications to image analysis. The methods of the paper exploit the idea of implicit weighting, which is inspired by the highly robust least weighted squares regression estimator. We use a correlation coefficient based on implicit weighting of individual pixels as a highly robust similarity measure between two images. The reweighted least weighted squares estimator is considered as an alternative regression estimator with a clear interpretation. We apply implicit weighting to dimension reduction by means of robust principal component analysis. Highly robust methods are exploited in tasks of face localization and face detection in a database of 2D images. In this context we investigate a method for outlier detection and a filter for image denoising based on implicit weighting.
Reviewer: Reviewer (Berlin)

68U10 Computing methodologies for image processing
68T10 Pattern recognition, speech recognition
Full Text: DOI
[1] Arya, K.V., Gupta, P., Kalra, P.K., Mitra, P.: Image registration using robust M-estimators. Pattern Recognit. Lett. 28, 1957–1968 (2007) · doi:10.1016/j.patrec.2007.05.006
[2] Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997) · Zbl 05111919 · doi:10.1109/34.598228
[3] Böhringer, S., Vollmar, T., Tasse, C., Würtz, R.P., Gillessen-Kaesbach, G., Horsthemke, B., Wieczorek, D.: Syndrome identification based on 2D analysis software. Eur. J. Hum. Genet. 14, 1082–1089 (2006) · doi:10.1038/sj.ejhg.5201673
[4] Chai, X., Shan, S., Chen, X., Gao, W.: Locally linear regression for pose-invariant face recognition. IEEE Trans. Image Process. 16(7), 1716–1725 (2007) · Zbl 05453669 · doi:10.1109/TIP.2007.899195
[5] Chambers, J.M.: Software for Data Analysis: Programming with R. Springer, New York (2008) · Zbl 1180.62002
[6] Chen, J.-H., Chen, C.-S., Chen, Y.-S.: Fast algorithm for robust template matching with M-estimators. IEEE Trans. Signal Process. 51(1), 230–243 (2003) · Zbl 1369.94109 · doi:10.1109/TSP.2002.806551
[7] Čížek, P.: Robust estimation with discrete explanatory variables. In: Härdle, W., Rönz, B. (eds.) COMPSTAT 2002, Proceedings in Computational Statistics, pp. 509–514. Physica-Verlag, Heidelberg (2002)
[8] Čížek, P.: Semiparametrically weighted robust estimation of regression models. Comput. Stat. Data Anal. 55(1), 774–788 (2011) · Zbl 1247.62115 · doi:10.1016/j.csda.2010.06.024
[9] Dabov, K., Foi, A., Katkovnik, V., Egizarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007) · Zbl 05453745 · doi:10.1109/TIP.2007.901238
[10] Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR, pp. 886–893. IEEE Computer Society, Washington (2005)
[11] Davies, P.L., Gather, U.: Breakdown and groups. Ann. Stat. 33(3), 977–1035 (2005) · Zbl 1077.62041 · doi:10.1214/009053604000001138
[12] Davies, P.L., Kovac, A.: Local extremes, runs, strings and multiresolution. Ann. Stat. 29(1), 1–65 (2001) · Zbl 1029.62038 · doi:10.1214/aos/996986501
[13] Donoho, D.L., Huber, P.J.: The notion of breakdown point. In: Bickel, P.J., Doksum, K., Hodges, J.L.J. (eds.) A Festschrift for Erich L. Lehmann, pp. 157–184. Wadsworth, Belmont (1983)
[14] Ellis, S.P., Morgenthaler, S.: Leverage and breakdown in L1 regression. J. Am. Stat. Assoc. 87(417), 143–148 (1992) · Zbl 0781.62101
[15] Fidler, S., Skočaj, D., Leonardis, A.: Combining reconstructive and discriminative subspace methods for robust classification and regression by subsampling. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 337–350 (2006) · Zbl 05110886 · doi:10.1109/TPAMI.2006.46
[16] Franceschi, E., Odone, F., Smeraldi, F., Verri, A.: Finding objects with hypothesis testing. In: Proceedings of ICPR 2004, Workshop on Learning for Adaptable Visual Systems, Cambridge, 2004. IEEE Computer Society, Los Alamitos (2004)
[17] Fried, R., Einbeck, J., Gather, U.: Weighted repeated median smoothing and filtering. J. Am. Stat. Assoc. 102(480), 1300–1308 (2007) · Zbl 1332.94021 · doi:10.1198/016214507000001166
[18] Gervini, D., Yohai, V.J.: A class of robust and fully efficient regression estimators. Ann. Stat. 30(2), 583–616 (2002) · Zbl 1012.62073 · doi:10.1214/aos/1021379866
[19] Hájek, J., Šidák, Z., Sen, P.K.: Theory of Rank Tests, 2nd edn. Academic Press, San Diego (1999) · Zbl 0944.62045
[20] Härdle, W.K., Simar, L.: Applied Multivariate Statistical Analysis. Springer, Heidelberg (2007) · Zbl 1115.62057
[21] He, X., Portnoy, S.: Reweighted LS estimators converge at the same rate as the initial estimator. Ann. Stat. 20(4), 2161–2167 (1992) · Zbl 0764.62043 · doi:10.1214/aos/1176348910
[22] Hillebrand, M., Müller, C.: Outlier robust corner-preserving methods for reconstructing noisy images. Ann. Stat. 35(1), 132–165 (2007) · Zbl 1114.62050 · doi:10.1214/009053606000001109
[23] Hotz, T., Marnitz, P., Stichtenoth, R., Davies, P.L., Kabluchko, Z., Munk, A.: Locally adaptive image denoising by a statistical multiresolution criterion. Preprint statistical regularization and qualitative constraints 8/2009, University of Göttingen (2009) · Zbl 1239.62116
[24] Huang, L.-L., Shimizu, A.: Combining classifiers for robust face detection. In: Lecture Notes in Computer Science, vol. 3972, pp. 116–121 (2006)
[25] Hubert, M., Rousseeuw, P.J., van Aelst, S.: High-breakdown robust multivariate methods. Stat. Sci. 23(1), 92–119 (2008) · Zbl 1327.62328 · doi:10.1214/088342307000000087
[26] Kalina, J.: Asymptotic Durbin-Watson test for robust regression. Bull. Int. Stat. Inst. 62, 3406–3409 (2007)
[27] Kalina, J.: Robust image analysis of faces for genetic applications. Eur. J. Biomed. Inform. 6(2), 6–13 (2010)
[28] Kalina, J.: On multivariate methods in robust econometrics. Prague Econ. Pap. 1(2012), 69–82 (2012)
[29] Kleihorst, R.P.: Noise filtering of image sequences. Dissertation, Technical University Delft (1997)
[30] Lin, Z., Davis, L.S., Doermann, D.S., DeMenthon, D.: Hierarchical part-template matching for human detection and segmentation. In: Proceedings of the Eleventh IEEE International Conference on Computer Vision ICCV 2007, pp. 1–8. IEEE Computer Society, Washington (2007)
[31] Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE Trans. Image Process. 17(1), 53–69 (2008) · Zbl 05516526 · doi:10.1109/TIP.2007.911828
[32] Maronna, R.A., Martin, R.D., Yohai, V.J.: Robust Statistics: Theory and Methods. Wiley, Chichester (2006) · Zbl 1094.62040
[33] Meer, P., Mintz, D., Rosenfeld, A., Kim, D.Y.: Robust regression methods for computer vision: A review. Int. J. Comput. Vis. 6(1), 59–70 (1991) · doi:10.1007/BF00127126
[34] Müller, C.: Redescending M-estimators in regression analysis, cluster analysis and image analysis. Discuss. Math., Probab. Stat. 24(1), 59–75 (2004) · Zbl 1053.62081
[35] Naseem, I., Togneri, R., Bennamoun, M.: Linear regression for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 2106–2112 (2010) · doi:10.1109/TPAMI.2010.128
[36] Pitas, I., Venetsanopoulos, A.N.: Nonlinear Digital Filters. Kluwer, Dordrecht (1990) · Zbl 0719.93080
[37] Plát, P.: The least weighted squares estimator. In: Antoch, J. (ed.) COMPSTAT 2004, Proceedings in Computational Statistics, pp. 1653–1660. Physica-Verlag, Heidelberg (2004)
[38] Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003) · Zbl 1279.94028 · doi:10.1109/TIP.2003.818640
[39] Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. Wiley, New York (1987) · Zbl 0711.62030
[40] Rousseeuw, P.J., van Driessen, K.: Computing LTS regression for large data sets. Data Min. Knowl. Discov. 12(1), 29–45 (2006) · Zbl 05025258 · doi:10.1007/s10618-005-0024-4
[41] Rowley, H., Baluja, S., Kanade, S.: Neural network-based face detection. IEEE Trans. Pattern Anal. Mach. Intell. 20(1), 23–38 (1998) · Zbl 05110546 · doi:10.1109/34.655647
[42] Salibián-Barrera, M.: The asymptotics of MM-estimators for linear regression with fixed designs. Metrika 63, 283–294 (2006) · Zbl 1095.62097 · doi:10.1007/s00184-005-0019-6
[43] Schettlinger, K., Fried, R., Gather, U.: Real time signal processing by adaptive repeated median filters. Int. J. Adapt. Control Signal Process. 24(5), 346–362 (2010) · Zbl 1193.94040
[44] Shevlyakov, G.L., Vilchevski, N.O.: Robustness in Data Analysis: Criteria and Methods. VSP, Utrecht (2002)
[45] Tableman, M.: The influence functions for the least trimmed squares and the least trimmed absolute deviations estimators. Stat. Probab. Lett. 19, 329–337 (1994) · Zbl 0803.62027 · doi:10.1016/0167-7152(94)90186-4
[46] Torralba, A., Murphy, K.P., Freeman, W.T.: Sharing visual features for multiclass and multiview object detection. IEEE Trans. Pattern Anal. Mach. Intell. 5, 854–869 (2007) · Zbl 05340832 · doi:10.1109/TPAMI.2007.1055
[47] Tuzel, O., Porikli, F., Meer, P.: Human detection via classification on Riemannian manifolds. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR 2007. IEEE Computer Society, Washington (2007) · Zbl 1359.94040
[48] Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57, 137–154 (2004) · Zbl 05671822 · doi:10.1023/B:VISI.0000013087.49260.fb
[49] Víšek, J.A.: The least weighted squares II. Consistency and asymptotic normality. Bull. Czech Econom. Soc. 9(16), 1–28 (2002)
[50] Víšek, J.A.: Robust error-term-scale estimate. In: Nonparametrics and Robustness in Modern Statistical Inference and Time Series Analysis. Institute of Mathematical Statistics Collections, vol. 7, pp. 254–267 (2010)
[51] Víšek, J.A.: Consistency of the least weighted squares under heteroscedasticity. Kybernetika 47(2), 179–206 (2011) · Zbl 1220.62064
[52] Wang, M., Lai, C.-H.: A Concise Introduction to Image Processing Using C++. CRC Press, Boca Raton (2008)
[53] Wang, X., Tang, X.: Subspace analysis using random mixture models. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR 2005, pp. 574–580. IEEE Computer Society, Washington (2005)
[54] Wong, Y., Sanderson, C., Lovell, B.C.: Regression based non-frontal face synthesis for improved identity verification. In: Jiang, X., Petkov, N. (eds.) Computer Analysis of Images and Patterns, pp. 116–124. Springer, Heidelberg (2010)
[55] Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Yi, M.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009) · doi:10.1109/TPAMI.2008.79
[56] Yang, M.-H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 24(1), 34–58 (2002) · doi:10.1109/34.982883
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.