zbMATH — the first resource for mathematics

Invariant differential operators on Grassmann manifolds. (English) Zbl 0613.58038
The algebra D(G/H) of G-invariant differential operators on the manifold G/H (H closed subgroup of the Lie group G) is computed for the case: G \(= the\) group M(n) of rigid motions of \(R^ n\), H \(= the\) subgroup leaving invariant a certain p-plane in \(R^ n\). Hence \(G/H=G(p,n) = space\) of p- planes in \(R^ n\) (p,n arbitrary). It is shown that D(G(p,n)) is an algebra with \(\min (p+1,n-p)\) algebraically independent generators.
Reviewer: S.Andersson

58J70 Invariance and symmetry properties for PDEs on manifolds
43A85 Harmonic analysis on homogeneous spaces
Full Text: DOI
[1] Duflo, M, Opérateurs invariants sur un espace symétrique, C. R. acad. sci. Paris Sér. A, 289, 135-137, (1979) · Zbl 0419.43012
[2] Gonzalez, F, Radon transforms on Grassmann manifolds, () · Zbl 0676.44004
[3] Helgason, S, Differential operators on homogeneous spaces, Acta. math., 102, 239-299, (1959) · Zbl 0146.43601
[4] Helgason, S, The Radon transform on Euclidean spaces, two-point homogeneous spaces and Grassmann manifolds, Acta math., 113, 153-180, (1965) · Zbl 0163.16602
[5] Helgason, S, Groups and geometric analysis, (1984), Academic Press Orlanda, Flo
[6] Lichnèrowicz, A, Opérateurs differentiels invariants sur un espace symmétrique, C. R. acad. sci., 257, 3548-3550, (1963) · Zbl 0119.37601
[7] Raïs, M, Distributions homogènes sur des espaces de matrices, Bull. soc. math. France, suppl. Mémoire, 30, (1972) · Zbl 0245.46045
[8] Smoke, W, Commutativity of the invariant differential operators on a symmetric space, (), 222-224 · Zbl 0173.23903
[9] {\scR. S. Strichartz}, Harmonic analysis on Grassmann bundles, preprint. · Zbl 0618.43005
[10] Takiff, S.J, Invariant polynomials on Lie algebras of inhomogeneous unitary and special orthogonal groups, Trans. amer. math. soc., 170, 221-230, (1972) · Zbl 0247.22012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.