Numerical analysis of the equations of small strains quasistatic elastoviscoplasticity. (English) Zbl 0613.73028

(Authors’ summary.) This paper deals with the mathematical and numerical analysis of small strains elastoviscoplasticity. By considering the problem as an evolution equation whose only unknown is the stress field, the quasistatic elastoviscoplastic evolution problem is shown to be well- posed, consistent mixed finite-element methods are introduced, and classical numerical algorithms are interpreted. In particular, augmented Lagrangian methods operating on the velocity appear as standard alternating-direction time-integrations of the stress evolution problem.


74S30 Other numerical methods in solid mechanics (MSC2010)
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74H99 Dynamical problems in solid mechanics
74S99 Numerical and other methods in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI EuDML


[1] Adams, R.: Sobolev Spaces. New York: Academic Press 1975 · Zbl 0314.46030
[2] Bermudez, A., Viano, J.M.: Quelques Méthodes Numériques en élastoplasticité. Rapport de Recherche No 76, INRIA 1981
[3] Damlamian, A.: Nonlinear evolution equations with variable norms. Ph.D. Thesis, Harward 1974 · Zbl 0356.35047
[4] Djaoua, M., Suquet, P.: Evolution quasi-statique des milieux viscoplastiques de Maxwell-Norton. (To appear in Math. Methods Appl. Sci.) · Zbl 0563.73024
[5] Ekeland, I., Temam, R.: Convex analysis and variational problems. North Holland: Amsterdam 1978 · Zbl 0281.49001
[6] Fortin, M., Glowinski, R.: Méthodes de Lagrangian augmenté. Paris: Dunod-Bordas 1982
[7] Friaa, A.: La loi de Norton-Hoff généralisée, Thèse d’Etat, Université de Paris 1979
[8] Suquet, P., Geymonat, G.: Espaces fonctionnels pour les milieux de Norton-Hoff (To appear)
[9] Girault, V., Raviart, P.A.: Finite element approximation of the Navier Stokes equations, Berlin, Heidelberg, New York: Springer 1979 · Zbl 0413.65081
[10] Glowinski, R.: Numerical methods for nonlinear variational problems. Berlin, Heidelberg, New York: Springer 1984 · Zbl 0536.65054
[11] Le Tallec, P.: Numerical solution of viscoplastic flow problems by augmented Lagrangians. (To appear in IMA J. Numer. Anal.) · Zbl 0596.73012
[12] Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal.16, 964-979 (1979) · Zbl 0426.65050
[13] Mercier, B.: Une méthode pour résoudre le problème des charges limites. J. Mec.16, 567 (1977) · Zbl 0363.73031
[14] Moreau, J.J.: Fontionnelles convexes. Cours au Collège de France, Paris 1966
[15] Rockafellar, R.T.: Integrals which are convex functionals. Pac. J. Math.24, 525-539 (1968) · Zbl 0159.43804
[16] Ruas, V.: Méthodes d’éléments finis quasilinéaires en déplacements pour l’étude des milieux incompressibles. (To appear in RAIRO)
[17] Suquet, P.: Sur les équations de la plasticité: existence et régularité des solutions. J. Mec.20, 3-39 (1981) · Zbl 0474.73030
[18] Temam, R., Strang, G.: Duality and relaxation in the variational problems of Plasticity. J. Mec.19, 493-527 (1980) · Zbl 0465.73033
[19] Zienkiewicz, O.: The Finite Element Method. New York: MacGraw-Hill 1977 · Zbl 0435.73072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.