Araki, Mituhiko; Hagiwara, Tomomichi Pole assignment by multirate sampled-data output feedback. (English) Zbl 0613.93040 Int. J. Control 44, 1661-1673 (1986). This paper considers multirate sampled-data control of a linear time- invariant continuous-time system. It is shown that, if the system is controllable and observable, a multirate sampled-data ’gain’ controller can always be constructed and the poles of the closed-loop system can be assigned an arbitrary given symmetric set of complex numbers. Moreover, ’locally minimum controllability indices LMCI’ are defined as a set of integers \((n_ 1,...,n_ m)\) such that \(\sum^{m}_{i=1}n_ i\) equals the dimension of the state vector and the matrix \([b_ 1,...,A^{n_ 1-1}b_ 1,...,b_ m,...,A^{n_ m-1}b_ m]\) is non- singular. It is obvious that the Kronecker invariants are LMCI. It is shown that the input sampling rate \((N_ 1,...,N_ m)\) can be chosen equal to LMCI. This method has the following properties: (1) Sampling of the output is done less often than sampling of the input. (2) Only a gain controller is used. (3) The designed controller becomes stable. These properties do not always imply the advantages of this method, but, at least, suggest a new perspective. Reviewer: M.Kono Cited in 24 Documents MSC: 93C57 Sampled-data control/observation systems 93B55 Pole and zero placement problems 93C05 Linear systems in control theory 93B25 Algebraic methods 93B05 Controllability Keywords:pole assignment; output feedback; multirate sampled-data control; time-invariant; continuous-time PDF BibTeX XML Cite \textit{M. Araki} and \textit{T. Hagiwara}, Int. J. Control 44, 1661--1673 (1986; Zbl 0613.93040) Full Text: DOI References: [1] DOI: 10.1109/TAC.1986.1104205 · doi:10.1109/TAC.1986.1104205 [2] ARAKI M., US-Japan Seminar on Recent Advances in Algebraic System Theory (1983) [3] DOI: 10.1109/TAC.1975.1101016 · doi:10.1109/TAC.1975.1101016 [4] DOI: 10.1080/00207177808922419 · Zbl 0388.93021 · doi:10.1080/00207177808922419 [5] COFFEY T. C., A.I.A.A. J. 4 pp 2178– (1966) [6] DOI: 10.1016/S0167-6911(82)80016-9 · Zbl 0489.93042 · doi:10.1016/S0167-6911(82)80016-9 [7] DOI: 10.1080/00207178608933578 · Zbl 0592.93025 · doi:10.1080/00207178608933578 [8] DOI: 10.1109/TAC.1967.1098564 · doi:10.1109/TAC.1967.1098564 [9] KALMAN R. E., Proc. Conf. on Ordinary Differential Equations (1971) [10] DOI: 10.1016/0016-0032(59)90093-6 · Zbl 0142.07004 · doi:10.1016/0016-0032(59)90093-6 [11] KALMAN R. E., Contrib. Diff. Eqns 1 pp 189– (1962) [12] DOI: 10.1109/TAC.1957.1104783 · doi:10.1109/TAC.1957.1104783 [13] DOI: 10.1080/00207727908941606 · Zbl 0435.94017 · doi:10.1080/00207727908941606 [14] DOI: 10.1109/TASSP.1976.1162760 · doi:10.1109/TASSP.1976.1162760 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.