zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Non-smooth plant disease models with economic thresholds. (English) Zbl 1309.92077
Summary: In order to control plant diseases and eventually maintain the number of infected plants below an economic threshold, a specific management strategy called the threshold policy is proposed, resulting in Filippov systems. These are a class of piecewise smooth systems of differential equations with a discontinuous right-hand side. The aim of this work is to investigate the global dynamic behavior including sliding dynamics of one Filippov plant disease model with cultural control strategy. We examine a Lotka-Volterra Filippov plant disease model with proportional planting rate, which is globally studied in terms of five types of equilibria. For one type of equilibrium, the global structure is discussed by the iterative equations for initial numbers of plants. For the other four types of equilibria, the bounded global attractor of each type is obtained by constructing appropriate Lyapunov functions. The ideas of constructing Lyapunov functions for Filippov systems, the methods of analyzing such systems and the main results presented here provide scientific support for completing control regimens on plant diseases in integrated disease management.

92C80Plant biology
Full Text: DOI