zbMATH — the first resource for mathematics

Cartesian closed topological hulls as injective hulls. (English) Zbl 0614.18003
Topological hulls are characterized as injective hulls in the quasicategory of the fibre-small concrete categories over an arbitrary category and it has been desired to give similar results for Cartesian closed topological hulls. In this paper the authors accomplish this by introducing the concept of concretely Cartesian closed topological hulls, as follows.
Let X be a Cartesian closed category. In the quasicategory \(Cat_ PX\) whose objects are the small fibred concrete categories over X with finite concrete products and whose morphisms are the concrete functors over X that preserve these products, injective hulls are concretely Cartesian closed topological hulls. In case X is the terminal category, this means that injective hulls are local hulls in the category of (meet-) semilattices, the result by Bruns-Lakser and Horn-Kimura. In case X is Set, the authors also give the characterization of Cartesian closed topological hulls in the quasicategory of fibre-small concrete categories over Set with certain additional but natural conditions.
Reviewer: R.Nakagawa

18A99 General theory of categories and functors
18D15 Closed categories (closed monoidal and Cartesian closed categories, etc.)
18G05 Projectives and injectives (category-theoretic aspects)
18A35 Categories admitting limits (complete categories), functors preserving limits, completions
Full Text: DOI
[1] Antoine P., II, Bull. Soc. Math. Belge 18 pp 387– (1966)
[2] Adémek J., Cartesian closed categories
[3] DOI: 10.1016/0166-8641(80)90012-7 · Zbl 0423.18010 · doi:10.1016/0166-8641(80)90012-7
[4] Adémek J., Comment. Math. Univ. Carolinae 22 pp 235– (1981)
[5] Bourdaud G., Cahiers Topologie Géom. Differentielle 16 pp 107– (1975)
[6] Bourdaud G., Some Cartesian closed topological categories of convergence spaces 540 (1975) · Zbl 0332.54004
[7] DOI: 10.1007/BF01898828 · Zbl 0157.34101 · doi:10.1007/BF01898828
[8] Brümmer, G. C.L. and Hoffmann, R.E. 1976.An external characterization of topological functorsVol. 540, 136–151. Proc. Internat. Conf. Categorical Topology (Mannheim 1975), Lecture Notes in Math., vol., Springer-Verlag, Berlin and New York
[9] DOI: 10.4153/CMB-1970-023-6 · Zbl 0212.03801 · doi:10.4153/CMB-1970-023-6
[10] DOI: 10.1007/BF01215227 · Zbl 0319.18001 · doi:10.1007/BF01215227
[11] Herrlich R., Universal top01ogy (1984)
[12] DOI: 10.1090/S0002-9939-1977-0476831-6 · doi:10.1090/S0002-9939-1977-0476831-6
[13] DOI: 10.1007/BF02944952 · Zbl 0249.06004 · doi:10.1007/BF02944952
[14] Machado A., Differentielle 14 pp 309– (1973)
[15] DOI: 10.4153/CJM-1975-139-9 · Zbl 0294.18002 · doi:10.4153/CJM-1975-139-9
[16] DOI: 10.1017/S0004972700008017 · Zbl 0379.18004 · doi:10.1017/S0004972700008017
[17] DOI: 10.1215/S0012-7094-63-03001-1 · Zbl 0114.38702 · doi:10.1215/S0012-7094-63-03001-1
[18] Strecker G. E., On Cartesian closed topological hulls (1984) · Zbl 0548.18006
[19] DOI: 10.1016/0016-660X(72)90014-1 · Zbl 0264.54018 · doi:10.1016/0016-660X(72)90014-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.