## Homogeneous mean values: weights and asymptotics.(English)Zbl 0614.26002

The authors prove the following. Let M be a reflexive $$(M(\lambda,...,\lambda)=\lambda)$$ homogeneous mean (presumably on the Cartesian power of a real interval going to $$\infty)$$, with continuous second derivatives in each variable in a neighborhood of (1,...,1) and $$q_ k=(\partial M/\partial x_ k)(1,...,1)\quad (k=1,...,n).$$ Then $M(a_ 1+x,...,a_ n+x)=x+\sum^{n}_{k=1}q_ ka_ k+0(1/x)\quad as\quad x\to \infty.$ (For the history of the problem see the preceding review.) Several means satisfying these conditions (and one which does not) are enumerated. One of them, the hypergeometric mean [B. C. Carlson, Proc. Am. Math. Soc. 16, 759-766 (1965; Zbl 0137.268)] is further investigated for infinite sequences.
Reviewer: J.Aczél

### MSC:

 26A12 Rate of growth of functions, orders of infinity, slowly varying functions 26D15 Inequalities for sums, series and integrals 33C05 Classical hypergeometric functions, $${}_2F_1$$

### Citations:

Zbl 0614.26001; Zbl 0137.268
Full Text:

### References:

 [1] Beckenbach, E. F.; Bellman, R., Inequalities (1961), Springer: Springer Berlin · Zbl 0513.26003 [2] Brenner, J. L., A unified treatment and extension of some means of classical analysis—I: Comparison theorems, J. Combin. Inform. System Sci., 3, 175-199 (1978) · Zbl 0408.26008 [3] Brenner, J. L., Limits of means for large values of the variables, Pi Mu Epsilon J., 8, 160-163 (1985) · Zbl 0601.26012 [4] Carlson, B. C., A hypergeometric mean value, (Proc. Amer. Math. Soc., 16 (1965)), 759-766 · Zbl 0137.26802 [5] Carlson, B. C., Algorithms involving arithmetic and geometric means, Amer. Math. Monthly, 78, 496-505 (1971) · Zbl 0218.65035 [6] Carlson, B. C., Special Functions of Applied Mathematics (1977), Academic Press: Academic Press New York · Zbl 0394.33001 [7] Carlson, B. C., Dirichlet averages of $$x$$′ log $$x$$, SIAM J. Math. Anal., 18, 2 (1987) · Zbl 0611.33004 [8] Carlson, B. C.; Meany, R. K.; Nelson, S. A., Mixed arithmetic and geometric means, Pacific J. Math., 38, 343-349 (1971) · Zbl 0195.34603 [9] Carlson, B. C.; Tobey, M. D., A property of the hypergeometric mean value, (Proc. Amer. Math. Soc., 19 (1968)), 255-262 · Zbl 0173.06902 [10] Evans, G. C., Functionals and their Applications (1964), Dover: Dover New York · Zbl 0178.49502 [11] Hardy, G. H.; Littlewood, J. E.; Pólya, G., Inequalities (1959), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0634.26008 [12] Hoehn, L.; Niven, I., Averages on the move, Math. Mag., 58, 151-156 (1985) · Zbl 0601.26011 [13] Leach, E.; Sholander, M., Multi-variable extended mean values, J. Math. Anal. Appl., 104, 390-407 (1984) · Zbl 0558.26014 [14] Miel, G., Of calculations past and present: The Archimidean algorithm, Amer. Math. Monthly, 90, 17-35 (1983) · Zbl 0516.65005 [15] Pittenger, A. O., The logarithmic mean in $$n$$ variables, Amer. Math. Monthly, 92, 99-104 (1985) · Zbl 0597.26027 [16] Pittenger, A. O., Limit theorems for logarithmic means, J. Math. Anal. Appl., 123, 281-291 (1987) · Zbl 0618.26015 [17] Schapira, H., Bemerkungen zu der Grenzfunktion algebraischer Iteration, Schlömilch Z., 32, 310-314 (1887) · JFM 19.0373.02 [18] Schoenberg, I. J., On the arithmetic-geometric mean, Delta, 7, 49-65 (1978) [19] Schoenberg, I. J., Mathematical Time Exposures (1982), Math. Assn. Amer: Math. Assn. Amer Washington, D.C · Zbl 0519.00002 [20] Stolarsky, K. B., The power and generalized logarithmic means, Amer. Math. Monthly, 87, 545-548 (1980) · Zbl 0455.26008 [21] Tobey, M. D., (Ph. D. thesis (1966), Iowa State Univ: Iowa State Univ Ames) [22] Tobey, M. D., A two-parameter homogeneous mean value, (Proc. Amer. Math. Soc., 18 (1967)), 9-14 · Zbl 0155.10101 [23] Whiteley, J. N., Some inequalities concerning symmetric forms, Mathematika, 5, 49-57 (1958) · Zbl 0085.01103 [24] Whiteley, J. N., A generalization of a theorem of Newton, (Proc. Amer. Math. Soc., 13 (1962)), 144-151 · Zbl 0105.26903 [25] Wimp, J., Multidimensional iteration algorithms, (Rend. Sem. Mat. Univ. Politec. Torino, Fascicolo speciale (July 1985)), 63-89 [26] Boas, R. P.; Brenner, J. L., Asymptotic behavior of inhomogeneous means, J. Math. Anal. Appl., 123, 262-264 (1987) · Zbl 0614.26001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.