zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Some existence results for superlinear elliptic boundary value problems involving critical exponents. (English) Zbl 0614.35035
This paper deals with the superlinear elliptic boundary value problem $$- \Delta u-\lambda u=u \vert u\vert\sp{2\sp*-2}\quad in\quad \Omega;\quad u\vert\sb{\partial \Omega}=0, $$ where $\Omega$ is a smoothly bounded domain in $R\sp n$, $n>2$, $\lambda\in R$, $2\sp*=2n/(n-2)$ and $2\sp*$ is the limiting Sobolev exponent for the embedding $H\sp 1\sb 0(\Omega)\to L\sp p(\Omega)$. Solving this problem is equivalent to finding critical points in $H\sp 1\sb 0(\Omega)$ of the energy functional $$ I\sb{\lambda}(u)=(1/2)\int\sb{\Omega}(\vert \nabla u\vert\sp 2-\lambda \vert u\vert\sp 2)dx-(1/2)\int\sb{\Omega}\vert u\vert\sp{2\sp*} dx. $$ First, based on the global compactness theorem for the problem (1), the compactness question is discussed. Then some results about the existence and multiplicity of solutions to the above problem are obtained.
Reviewer: Xu Zhenyuan

MSC:
35J65Nonlinear boundary value problems for linear elliptic equations
35J20Second order elliptic equations, variational methods
35D05Existence of generalized solutions of PDE (MSC2000)
46E35Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
WorldCat.org
Full Text: DOI
References:
[1] A. Ambrosetti and M. Struwe, A note on the problem - {$\Delta$}u = {$\lambda$}u + u|u|2\ast - 2, preprint.
[2] Brezis, H.; Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. pure. Appl. math. 36, 437-477 (1983) · Zbl 0541.35029
[3] A. Capozzi, D. Fortunato, and G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincaré (Anal. Nonlinéaire), in press. · Zbl 0612.35053
[4] Cerami, G.; Fortunato, D.; Struwe, M.: Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents. Ann. inst. H. Poincaré (Anal. Nonlinéaire) 1, 341-350 (1984) · Zbl 0568.35039
[5] D. Fortunato and E. Jannelli, Infinitely Many Solutions for Some Nonlinear Elliptic Problems in Symmetrical Domains, preprint. · Zbl 0676.35024
[6] Gidas, B.: Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations. Nonlinear differential equations in engineering and applied sciences, 255-273 (1979)
[7] Gidas, B.; Ni, W. M.; Nirenberg, L.: Symmetry and related properties via the maximum principle. Comm. math. Phys. 68, 209-243 (1979) · Zbl 0425.35020
[8] Gidas, B.; Ni, W. M.; Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in rn. Mathematical analysis and applications, part A, 370-401 (1981) · Zbl 0469.35052
[9] Hofer, H.: Variational and topological methods in partially ordered Hilbert spaces. Math. ann. 261, 493-514 (1982) · Zbl 0488.47034
[10] Loewner, C.; Nirenberg, L.: Partial differential equations invariant under conformal and projective transformations. Contributions to analysis, 245-272 (1974) · Zbl 0298.35018
[11] Miranda, C.: Un’osservazione sul teorema di Brouwer. Boll. un. Mat. ital. Ser. II, anno III n. 1 19, 5-7 (1940) · Zbl 66.0217.01
[12] Palais, R. S.: Morse theory on Hilbert manifolds. Topology 2, 299-340 (1963) · Zbl 0122.10702
[13] Pohožaev, S. I.: Eigenfunctions of the equation ${\Delta}u + {\lambda}f(u) = 0$. Soviet math. Dokl. 6, 1408-1411 (1965) · Zbl 0141.30202
[14] Rabinowitz, P. H.: Variational methods for nonlinear eigenvalue problems. Eigenvalues in nonlinear problems, 141-195 (1974)
[15] Solimini, S.: On the solvability of some elliptic partial differential equations with the linear part at resonance. J. math. Anal. appl. 117, 138-152 (1986) · Zbl 0634.35030
[16] Struwe, M.: Superlinear elliptic boundary value problems with rotational symmetry. Arch. math. 39, 233-240 (1982) · Zbl 0496.35034
[17] Struwe, M.: A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187, 511-517 (1984) · Zbl 0535.35025
[18] Talenti, G.: Best constants in Sobolev inequality. Ann. mat. 110, 353-372 (1976) · Zbl 0353.46018
[19] Uhlenbeck, K.: Variational problems for gauge fields. Seminar on differential geometry (1982) · Zbl 0481.58016
[20] Zhang-Dong, On the multiple solutions of the equation {$\Delta$}u + {$\lambda$}u + |u| 4 (n - 2)u = 0, preprint.
[21] Chen Wen Xiong, Infinitely many solutions for a nonlinear elliptic equation involving critical Sobolev exponents, preprint.