×

zbMATH — the first resource for mathematics

On numerical evaluation of integrals involving Bessel functions. (English) Zbl 0614.65012
The authors discuss the numerical computation of the integral \[ I=\int^{\infty}_{0}f(x)J_ n(rx)\quad dx \] for fixed integer \(n\geq 0\) and a given set of real values of r. In a first approach, they replace the Bessel function \(J_ n(x)\) by a well-known trigonometric integral and then compute I by using a fast Fourier transform procedure. The second method consists of the construction of weights and abscissas for a Gaussian integration formula with \(J_ n(x)\) a weight function over the intervals between two consecutive zeros of \(J_ n(x)\). A comparison shows that the second method, once the weights and abscissas have been obtained, is more efficient. A table of weights and abscissas for a five- point Gauss rule is given and an error analysis is presented. An appropriate application of any of the existing adaptive quadrature procedures is not discussed.
Reviewer: K.S.Kölbig

MSC:
65D20 Computation of special functions and constants, construction of tables
65T40 Numerical methods for trigonometric approximation and interpolation
65D32 Numerical quadrature and cubature formulas
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)
42A16 Fourier coefficients, Fourier series of functions with special properties, special Fourier series
Software:
QUADPACK
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] M. Ambrožová: Using fast Fourier transform for evaluation of the integral of an oscillating function on the infinite integral. (Czech.) RNDr. thesis. Matematicko-fyzikální fakulta Univerzity Karlovy, Praha 1979.
[2] N. S. Bahvalov: Numerical Methods. (Russian.) Nauka, Moskva 1973.
[3] I. S. Berezin I. P. Židkov: Methods of Computation. (Russian.) Vol. 1. Nauka, Moskva 1966.
[4] V. Bezvoda K. Segeth: A contribution to the theory of electromagnetic induction of a line source. Studia Geod. et Geoph. 20 (1976), 366-377.
[5] V. Bezvoda K. Segeth: Mathematical Modeling in Electromagnetic Prospecting Methods. Univerzita Karlova, Praha 1982.
[6] P. I. Davis P. Rabinowitz: Methods of Numerical Integration. Academic Press, New York 1975.
[7] R. H. Farzan: Propagation of electromagnetic waves in stratified media with local inhomogeneity. Mathematical Models in Physics and Chemistry and Numerical Methods of Their Realization. Teubner Texte zur Mathematik 61. Teubner, Leipzig 1984, 237-247.
[8] L. N. G. Filon: On a quadrature formula for trigonometric integrals. Proc. Roy. Soc. Edinburgh 49 (1928), 38-47. · JFM 55.0946.02
[9] I. S. Gradštein I. M. Ryžik: Tables of Integrals, Sums, Series, and Products. (Russian.) 5th Nauka, Moskva 1971.
[10] S.-Å. Gustafson G. Dahlqaist: On the computation of slowly convergent Fourier integrals. Methoden und Verfahren der mathematischen Physik. Band 6. Bibliographisches Institut, Mannheim 1972, 93-112.
[11] T. Kaneko B. Liu: Accumulation of round-off error in fast Fourier transforms. J. Assoc. Comput. Mach. 17 (1970), 637-654. · Zbl 0218.65037
[12] V. I. Krylov: Approximate Computation of Integrals. (Russian.) Nauka, Moskva 1967.
[13] I. M. Longman: Note on a method for computing infinite integrals of oscillatory functions. Proc. Camb. Phil. Soc. 52 (1956), 764-768. · Zbl 0072.33803
[14] R. Piessens E. de Doncker-Kapenga C. W. Überhuber D. K. Kahaner: QUADPACK. A Subroutine Package for Automatic Integration. Springer Series in Computational Mathematics 1. Springer-Verlag, Berlin 1983. · Zbl 0508.65005
[15] A. Ralston: A First Course in Numerical Analysis. McGraw-Hill, New York 1965. · Zbl 0139.31603
[16] K. Segeth: Roundoff errors in the fast computation of discrete convolutions. Apl. Mat. 26 (1981), 241-262. · Zbl 0474.65025
[17] H. J. Stetter: Numerical approximation of Fourier transforms. Numer. Math. 8 (1966), 235-249. · Zbl 0163.39503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.