## Combined finite element and spectral approximation of the Navier-Stokes equations.(English)Zbl 0614.76021

The authors consider numerical approximation for the stationary Navier- Stokes equation for an incompressible fluid contained in $$Q=\Omega \times I,\quad \Omega$$ a bounded domain of $$R^ 2$$ and $$I=(0,2\pi)$$, with Dirichlet conditions on the boundary $$\Gamma$$ of $$\Omega$$ and period conditions on $$I=(0,2\pi)$$. Let $L=\{f^ 0\in H^ 0(Q): \int f=0\},$
$V=\{v\in H^ 1(Q): v(x,0)=v(x,2\pi),\quad \forall x\in Q;\quad v(0,y)|_{\Gamma}=0\quad \forall y\in I\}^ 3;$ $$H_ p^{\ell,s}(Q)$$ be the closure of the space $$C_ p^{\infty}(J,C^{\infty}(\Omega))$$ (the $$C^{\infty}$$ functions v defined over R, periodic over I) in the norm of $$H^{\ell,s}(Q)=H^ 0(I,H^{\ell}(Q)\cap H^ s(I,H^ 0(Q))$$. In V,L one considers the maps H, $H(\lambda,u,p)=(f-\lambda \sum^{3}_{i=1}\frac{\partial (u_ iu)}{\partial x_ i},0)$ and T, where T solves the Stokes problem $(u,p)=T(g):-\Delta u+\nabla p=g,\quad \nabla u=0.$ Then an equivalent formulation of the stationary Navier-Stokes equation is to seek a solution ($$\lambda$$,u,p) of the equation $F(\lambda,u,p)=(u,p)+TH(\lambda,u,p)=0.$ The authors consider the numerical approximation of such solutions using a coupling of a finite element scheme over $$\Omega$$ and a spectral Fourier approximation in the periodicity direction supposing: There exists a compact interval $$A\subset R^+$$ and a continuous function $$\lambda \to y(\lambda)=(u(\lambda),p(\lambda))$$ from $$\Lambda$$ to $$V\times L$$ such that $$F(\lambda,y(\lambda))=0;\quad D_ uF(\lambda,y(\lambda))$$ is an isomorphism of $$V\times L$$ and a certain a priori estimate on the solutions $\sup_{\lambda \in \Lambda}\{\| u(\lambda)\| H_ p^{\rho,\sigma}(Q)+\| p(\lambda)\| H_ p^{\rho -1,\sigma - 1}(Q)\}\leq C$ where $$\rho$$ and $$\sigma$$ satisfy $$2\rho^{- 1}+\sigma^{-1}<2$$. Under such hypotheses they show the existence of approximating solutions $$(u_{\delta},p_{\delta})$$ defined in discrete spaces $$V_{\delta}\times L_{\delta}$$ depending on the mash size h and the largest wave number N, $$h\leq N^{-1}$$ such that if $$r\leq \min (\rho,2)$$ and if $$f\in H_ p^{\sigma -1,r-1}(Q)$$ there is a unique branch $$(u_{\delta}(\lambda),p_{\delta}(\lambda))$$ of an associated discrete problem such that $\sup_{\lambda \in \Lambda}\{\| u(\lambda)-u_{\delta}(\lambda)\|_ v+\| p(\lambda)- p_{\delta}(\lambda)\|_ v\}\leq C(N^{1-\sigma}+h^{r-1})$ for $$\delta$$ sufficiently small.
Reviewer: J.F.Thompson

### MSC:

 76D05 Navier-Stokes equations for incompressible viscous fluids 65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text:

### References:

 [1] Bernardi, C.: General finite element interpolation on curved domains (in press) · Zbl 0678.65003 [2] Brezzi, F.: On the existence, uniqueness and approximations of saddlepoint problems arising from Lagrangien multipliers. RAIRO Numer. Anal. R.2, 129-151 (1974) · Zbl 0338.90047 [3] Canuto, C., Fujii, H., Quarteroni, A.: Approximation of Symmetry breaking bifurcations for the Rayleigh convection problem (in press) · Zbl 0534.76089 [4] Canuto, C., Maday, Y., Quarteroni, A.: Analysis of the combined finite element and Fourier interpolation. Numer. Math.39, 205-220 (1982) · Zbl 0496.42002 [5] Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput.38, 67-86 (1982) · Zbl 0567.41008 [6] Ciarlet, P.G.: The finite element method for elliptic problems. Amsterdam: North-Holland 1978 · Zbl 0383.65058 [7] Ciarlet, P.G., Raviart, P.A.: The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. In: The mathematical fundations of the finite element method with application to partial differential equations. Aziz, A.K. (ed.) New York: Academic Press, pp. 409-474, 1972 · Zbl 0262.65070 [8] Descloux, J., Rappaz, J.: On numerical approximation of solution branches of nonlinear equations. RAIRO Numer. Anal.16 (4), 319-350 (1982) · Zbl 0505.65016 [9] Girault, V., Raviart, P.A.: Finite element approximation of the Navier-Stokes equations. Lecture Notes in Mathematics, 1979, n0 749. Berlin, Heidelberg, New York: Springer · Zbl 0413.65081 [10] Grisvard, P.: Equations diff?rentielles abstraites. Ann. Sci. Ecole Norm. Sup.4, 311-395 (1969) · Zbl 0193.43502 [11] Lions, J.L., Magenes, F.: Non homogeneous boundary value problems and applications. Berlin, Heidelberg, New York: Springer 1972 · Zbl 0227.35001 [12] Mercier, B., Raugel, G.: R?solution d’un probl?me aux limites dans un ouvert axisym?trique par ?l?ments finis enr, z et s?ries de Fourier en ?. RAIRO Numer. Anal.16 (4), 405-461 (1982) · Zbl 0531.65054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.