zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Time delays produced by essential nonlinearity in population growth models. (English) Zbl 0614.92015
It is pointed out that the asymptotic general solution to the $\theta$- model equation for a periodic carrying capacity K(t) and $t\succcurlyeq r\sp{-1}$ is identical in form to the generalized logistic equation solution with a built-in developmental time delay $\tau (\preccurlyeq r\sp{-1})$ and associated parameter ranges of primary biological interest. In the case of the $\theta$-model equation, the time delay is a purely dynamical consequence of the nonlinear form featured by the population growth rate.

92D25Population dynamics (general)
34A45Theoretical approximation of solutions of ODE
34A34Nonlinear ODE and systems, general
Full Text: DOI
[1] Arrigoni, M. and A. Stiner. 1985. ”Logistic Growth in a Fluctuating Environment”.J. math. Biol. 21, 237--241. · doi:10.1007/BF00276224
[2] Holmberg, A. 1982. ”On the Practical Identifiability of Microbial Growth Models Incorporating Michaelis-Menten Type Nonlinearities”.Math. Biosci. 62, 23--43. · Zbl 0489.92021 · doi:10.1016/0025-5564(82)90061-X
[3] Hutchinson G. E. 1948. ”Circular Causal Systems in Ecology”.Ann. N.Y. Acad. Sci. 50, 221--246. · doi:10.1111/j.1749-6632.1948.tb39854.x
[4] May, R. M. 1980.Lectures on Mathematics in the Life Sciences, Vol. 13, pp. 1--64. Providence, RI: American Mathematical Society.
[5] Maynard Smith, J. 1974.Models in Ecology, pp. 37--58. London: Cambridge University Press.
[6] Mueller, L. D. 1979. ”Growth Modelling ofDrosophila”. Ph.D. Dissertation, University of California, Davis.
[7] Rosen, G. 1984. ”Characterizing Conditions for Generalized Verhulst Logistic Growth of a Biological Population”.Bull. math. Biol. 46, 963--965. · Zbl 0547.92012 · doi:10.1007/BF02462082
[8] Rosen, G. 1985. ”Parameter Evolution in the -Model”.Evolution 39, 707--708. · doi:10.2307/2408667
[9] Thomas, W. R., M. J. Pomerantz and M. E. Gilpin. 1980. ”Chaos, Asymmetric Growth and Group Selection Dynamical Stability”.Ecology 61, 1312--1320. · doi:10.2307/1939039