zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Long term dynamics in a mathematical model of HIV-1 infection with delay in different variants of the basic drug therapy model. (English) Zbl 1317.92073
Summary: Infection with HIV-1, degrading the human immune system and recent advances of drug therapy to arrest HIV-1 infection, has generated considerable research interest in the area. Bonhoeffer et al. (1997) [1], introduced a population model representing long term dynamics of HIV infection in response to available drug therapies. We consider a similar type of approximate model incorporating time delay in the process of infection on the healthy T cells which, in turn, implies inclusion of a similar delay in the process of viral replication. The model is studied both analytically and numerically. We also include a similar delay in the killing rate of infected CD4$^{+}$ T cells by cytotoxic T-lymphocyte (CTL) and in the stimulation of CTL and analyse two resulting models numerically. The models with no time delay present have two equilibria: one where there is no infection and a non-trivial equilibrium where the infection can persist. If there is no time delay then the non-trivial equilibrium is locally asymptotically stable. Both our analytical results (for the first model) and our numerical results (for all three models) indicate that introduction of a time delay can destabilize the non-trivial equilibrium. The numerical results indicate that such destabilization occurs at realistic time delays and that there is a threshold time delay beneath which the equilibrium with infection present is locally asymptotically stable and above which this equilibrium is unstable and exhibits oscillatory solutions of increasing amplitude.

92C60Medical epidemiology
34D20Stability of ODE
Full Text: DOI