zbMATH — the first resource for mathematics

The VOLNA code for the numerical modeling of tsunami waves: generation, propagation and inundation. (English) Zbl 1258.76036
Summary: A novel tool for tsunami wave modeling is presented. This tool has the potential of being used for operational purposes: indeed, the numerical code VOLNA is able to handle the complete life cycle of a tsunami (generation, propagation and run-up along the coast). The algorithm works on unstructured triangular meshes and thus can be run in arbitrary complex domains. This paper contains a detailed description of the finite volume scheme implemented in the code. The numerical treatment of the wet/dry transition is explained. This point is crucial for accurate run-up/run-down computations. The majority of tsunami codes use semi-empirical techniques at this stage, which are not always sufficient for tsunami hazard mitigation. Indeed the decision to evacuate inhabitants is based on inundation maps, which are produced with these types of numerical tools. We present several realistic test cases that partially validate our algorithm. Comparisons with analytical solutions and experimental data are performed. Finally, the main conclusions are outlined and the perspectives for future research presented.
Reviewer: Reviewer (Berlin)

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76M12 Finite volume methods applied to problems in fluid mechanics
86A05 Hydrology, hydrography, oceanography
Full Text: DOI arXiv
[1] Synolakis, C.E.; Bernard, E.N., Tsunami science before and beyond boxing day 2004, Phil. trans. R. soc. A, 364, 2231-2265, (2006)
[2] Tatehata, H., (), 175-188, (Chapter)
[3] Titov, V.V.; Gonzalez, F.I.; Bernard, E.N.; Eble, M.C.; Mofjeld, H.O.; Newman, J.C.; Venturato, A.J., Real-time tsunami forecasting: challenges and solutions, Nat. hazards, 35, 41-58, (2005)
[4] Synolakis, C., India must cooperate on tsunami warning system, Nature, 434, 17-18, (2005)
[5] Dutykh, D.; Dias, F., Water waves generated by a moving bottom, () · Zbl 1310.76021
[6] D. Dutykh, Mathematical modelling of tsunami waves, Ph.D. Thesis, École Normale Supérieure de Cachan, 2007.
[7] Dutykh, D.; Dias, F.; Kervella, Y., Linear theory of wave generation by a moving bottom, C. R. acad. sci. Paris, ser. I, 343, 499-504, (2006) · Zbl 1102.76005
[8] Kervella, Y.; Dutykh, D.; Dias, F., Comparison between three-dimensional linear and nonlinear tsunami generation models, Theor. comput. fluid dyn., 21, 245-269, (2007) · Zbl 1161.76440
[9] Dutykh, D.; Dias, F., Tsunami generation by dynamic displacement of sea bed due to dip-slip faulting, Math. comput. simulation, 80, 4, 837-848, (2009) · Zbl 1178.86010
[10] Dutykh, D.; Dias, F., Influence of sedimentary layering on tsunami generation, Comput. methods appl. mech. engrg., 199, 1268-1275, (2010) · Zbl 1227.74034
[11] D. Dutykh, D. Mitsotakis, X. Gardeil, F. Dias, On the use of finite fault solution for tsunami generation problems, Theor. Comput. Fluid Dyn. (submitted for publication).
[12] Kroner, D., Numerical schemes for conservation laws, (1997), Wiley · Zbl 0872.76001
[13] Barth, T.J.; Ohlberger, M., (), (Chapter)
[14] Imamura, F., (), 231-241, (Chapter)
[15] V.V. Titov, F.I. González, Implementation and testing of the method of splitting tsunami (MOST) model, Technical Report ERL PMEL-112, Pacific Marine Environmental Laboratory, NOAA, 1997.
[16] C. Goto, Y. Ogawa, N. Shuto, F. Imamura, Numerical method of tsunami simulation with the leap-frog scheme, Technical Report, UNESCO, 1997.
[17] P.L.-F. Liu, S.-B. Woo, Y.-K. Cho, Computer programs for tsunami propagation and inundation, Technical Report, School of Civil and Environmental Engineering, Cornell University, 1998.
[18] Glaister, P., Approximate Riemann solutions of the shallow water equations, J. hydraul. res., 26, 293-300, (1988)
[19] Casulli, V., Semi-implicit finite difference methods for the two-dimensional shallow water equation, J. comput. phys., 86, 56-74, (1990) · Zbl 0681.76022
[20] Toro, E.F., Riemann problems and the WAF method for solving the two-dimensional shallow water equations, Philos. trans. R. soc. lond. A, 338, 43-68, (1992) · Zbl 0747.76027
[21] Bermudez, A.; Dervieux, A.; Desideri, J.-A.; Vazqueza, M.E., Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes, Comput. methods appl. mech. engrg., 155, 49-72, (1998) · Zbl 0961.76047
[22] Anastasiou, K.; Chan, C.T., Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes, Internat. J. numer. methods fluids, 24, 1225-1245, (1997) · Zbl 0886.76064
[23] Vazquez-Cendon, M.E., Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry, J. comput. phys., 148, 497-526, (1999) · Zbl 0931.76055
[24] Alcrudo, F.; Garcia-Navarro, P., A high-resolution Godunov-type scheme in finite volumes for the 2D shallow-water equations, Internat. J. numer. methods fluids, 16, 489-505, (1993) · Zbl 0766.76067
[25] Benkhaldoun, F.; Quivy, L., A non homogeneous Riemann solver for shallow water and two phase flows, Flow, turbul. combust., 76, 391-402, (2006) · Zbl 1108.76043
[26] Garcia-Navarro, P.; Vazquez-Cendon, M.E., On numerical treatment of the source terms in the shallow water equations, Comput. fluids, 29, 951-979, (2000) · Zbl 0986.76051
[27] Gallouet, T.; Hérard, J.-M.; Seguin, N., Some approximate Godunov schemes to compute shallow-water equations with topography, Comput. fluids, 32, 479-513, (2003) · Zbl 1084.76540
[28] Audusse, E.; Bouchut, F.; Bristeau, O.M.; Klein, R.; Perthame, B., A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. sci. comput., 25, 2050-2065, (2004) · Zbl 1133.65308
[29] Kim, D.-H.; Cho, Y.-S.; Yi, Y.-K., Propagation and run-up of nearshore tsunamis with HLLC approximate Riemann solver, Ocean eng., 34, 1164-1173, (2007)
[30] D.L. George, Finite volume methods and adaptive refinement for tsunami propagation and inundation, Ph.D. Thesis, Department of Applied Mathematics, University of Washington, Seattle, 2006.
[31] George, D.L.; Leveque, R.J., Finite volume methods and adaptive refinement for global tsunami propagation and local inundation, Sci. tsunami hazards, 24, 5, 319, (2006)
[32] Zhou, J.G.; Causon, D.M.; Ingram, D.M.; Mingham, C.G., Numerical solutions of the shallow water equations with discontinuous bed topography, Internat. J. numer. methods fluids, 38, 769-788, (2002) · Zbl 1040.76045
[33] Causon, D.M.; Ingram, D.M.; Mingham, C.G.; Yang, G.; Pearson, R.V., Calculation of shallow water flows using a Cartesian cut cell approach, Adv. water resour., 23, 545-562, (2000)
[34] Noelle, S.; Pankratz, N.; Puppo, G.; Natvig, J.R., Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows, J. comput. phys., 213, 474-499, (2006) · Zbl 1088.76037
[35] Castro, M.J.; Ferreiro, A.M.; Garcia-Rodriguez, J.A.; Gonzalez-Vida, J.M.; Macias, J.; Pares, C.; Vazquez-Cendon, M.E., The numerical treatment of wet/dry fronts in shallow flows: application to one-layer and two-layer systems, Math. comput. modelling, 42, 419-439, (2005) · Zbl 1121.76008
[36] Wei, Y.; Mao, X.-Z.; Cheung, K.F., Well-balanced finite-volume model for long-wave runup, J. waterw. port coastal Ocean eng., 132, 114-124, (2006)
[37] George, D.L., Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation, J. comput. phys., 227, 3089-3113, (2008) · Zbl 1329.76204
[38] Delis, A.I.; Kazolea, M.; Kampanis, N.A., A robust high-resolution finite volume scheme for the simulation of long waves over complex domains, Internat. J. numer. methods fluids, 56, 419-452, (2007) · Zbl 1129.76031
[39] Cienfuegos, R.; Barthélemy, E.; Bonneton, P., A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. part I: model development and analysis, Internat. J. numer. methods fluids, 51, 1217-1253, (2006) · Zbl 1158.76361
[40] Cienfuegos, R.; Barthélemy, E.; Bonneton, P., A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. part II: boundary conditions and model validation, Internat. J. numer. methods fluids, 53, 1423-1455, (2007) · Zbl 1370.76090
[41] S. Popinet, Quadtree-adaptive tsunami modelling, Ocean Dyn. (2011) (in press).
[42] Barthélemy, E., Nonlinear shallow water theories for coastal waves, Surv. geophys., 25, 315-337, (2004)
[43] Sapoval, B.; Baldassarri, A.; Gabrielli, A., Self-stabilized fractality of seacoasts through damped erosion, Phys. rev. lett., 93, 098501, (2004), [4 pages]
[44] Poncet, R.; Campbell, C.; Dias, F.; Locat, J.; Mosher, D., A study of the tsunami effects of two landslides in the st. Lawrence estuary, (), 755-764
[45] Serre, F., Contribution à l’étude des écoulements permanents et variables dans LES canaux, Houille blanche, 8, 374-388, (1953), & 830-872
[46] Peregrine, D.H., Long waves on a beach, J. fluid mech., 27, 815-827, (1967) · Zbl 0163.21105
[47] Madsen, P.A.; Bingham, H.B.; Schaffer, H.A., Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: derivation and analysis, Proc. R. soc. lond. ser. A, 459, 1075-1104, (2003) · Zbl 1041.76011
[48] Lynett, P.J., Nearshore wave modeling with high-order Boussinesq-type equations, J. waterw. port coastal Ocean eng., 132, 346-357, (2006)
[49] Dutykh, D.; Dias, F., Dissipative Boussinesq equations, C. R. mec., 335, 559-583, (2007) · Zbl 1131.76022
[50] Lannes, D.; Bonneton, P., Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation, Phys. fluids, 21, 016601, (2009) · Zbl 1183.76294
[51] Dias, F.; Milewski, P., On the fully-nonlinear shallow-water generalized Serre equations, Phys. lett. A, 374, 8, 1049-1053, (2010) · Zbl 1236.76013
[52] Chazel, F.; Lannes, D.; Marche, F., Numerical simulation of strongly nonlinear and dispersive waves using a green – naghdi model, J. sci. comput., (2010) · Zbl 1419.76454
[53] Bonneton, P.; Chazel, F.; Lannes, D.; Marche, F.; Tissier, M., A splitting approach for the fully nonlinear and weakly dispersive green – naghdi model, J. comput. phys., 230, 1479-1498, (2011) · Zbl 1391.76066
[54] Carter, J.D.; Cienfuegos, R., The kinematics and stability of solitary and cnoidal wave solutions of the Serre equations, Eur. J. mech. B fluids, 30, 259-268, (2011) · Zbl 1258.76047
[55] Dao, M.H.; Tkalich, P., Tsunami propagation modelling—a sensitivity study, Nat. hazard. Earth syst. sci., 7, 741-754, (2007)
[56] Ioualalen, M.; Asavanant, J.; Kaewbanjak, N.; Grilli, S.T.; Kirby, J.T.; Watts, P., Modeling the 26 December 2004 indian Ocean tsunami: case study of impact in Thailand, J. geophys. res., 112, C07024, (2007)
[57] Madsen, P.A.; Fuhrman, D.R.; Schäffer, H.A., On the solitary wave paradigm for tsunamis, J. geophys. res., 113, C12012, (2008)
[58] Cockburn, B.; Li, F.; Shu, C.-W., Locally divergence-free discontinuous Galerkin methods for the Maxwell equations, J. comput. phys., 194, 588-610, (2004) · Zbl 1049.78019
[59] Godunov, S.K., A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics, Mat. sb., 47, 271-290, (1959)
[60] J.-M. Ghidaglia, Une approche volumes finis pour la résolution des systèmes hyperboliques de lois de conservation, Technical Report, Département Transferts Thermiques et Aérodynamique, Direction des Etudes et Recherches, Electricité de France, HT-30/95/015/A, 1995.
[61] Ghidaglia, J.-M.; Kumbaro, A.; Le Coq, G., Une méthode volumes-finis à flux caractéristiques pour la résolution numérique des systèmes hyperboliques de lois de conservation, C. R. acad. sci. Paris, ser. I, 322, 981-988, (1996) · Zbl 0849.65076
[62] Ghidaglia, J.-M.; Kumbaro, A.; Le Coq, G., On the numerical solution to two fluid models via cell centered finite volume method, Eur. J. mech. B fluids, 20, 841-867, (2001) · Zbl 1059.76041
[63] J.-M. Ghidaglia, Flux schemes for solving nonlinear systems of conservation laws, in: J.J. Chattot, M. Hafez (Eds.), Proceedings of the Meeting in Honor of P.L. Roe, Arcachon, 1998.
[64] Roe, P.L., Approximate Riemann solvers, parameter vectors and difference schemes, J. comput. phys., 43, 357-372, (1981) · Zbl 0474.65066
[65] Cortes, J.; Ghidaglia, J.-M., Upwinding at low cost for complex models and flux schemes, ()
[66] Harten, A.; Lax, P.D.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM rev., 25, 35-61, (1983) · Zbl 0565.65051
[67] Davis, S.F., Simplified second-order Godunov-type methods, SIAM J. sci. stat. comput., 9, 445-473, (1988) · Zbl 0645.65050
[68] Einfeldt, B.; Munz, C.D.; Roe, P.L.; Sjogreen, B., On Godunov-type methods near low densities, J. comput. phys., 92, 273-295, (1991) · Zbl 0709.76102
[69] Toro, E.F.; Spruce, M.; Speares, W., Restoration of the contact surface in the HLL Riemann solver, Shock waves, 4, 25-34, (1994) · Zbl 0811.76053
[70] Fraccarollo, L.; Toro, E.F., Experimental and numerical assessment of the shallow water model for two-dimensional dam break type problems, J. hydraul. res., 33, 843-864, (1995)
[71] Batten, P.; Clarke, N.; Lambert, C.; Causon, D.M., On the choice of wavespeeds for the HLLC Riemann solver, SIAM J. sci. comput., 18, 6, 1553-1570, (1997) · Zbl 0992.65088
[72] Madsen, P.A.; Sorensen, O.R.; Schaffer, H.A., Surf zone dynamics simulated by a Boussinesq-type model. part I model description and cross-Shore motion of regular waves, Coastal eng., 32, 255-287, (1997)
[73] Hibberd, S.; Peregrine, D.H., Surf and run-up on a beach: a uniform bore, J. fluid mech., 95, 323-345, (1979) · Zbl 0415.76068
[74] Ozkan-Haller, H.T.; Kirby, J.T., A fourier – chebyshev collocation method for the shallow water equations including shoreline runup, Appl. Ocean res., 19, 21-34, (1997)
[75] Marche, F.; Bonneton, P.; Fabrie, P.; Seguin, N., Evaluation of well-balanced bore-capturing schemes for 2D wetting and drying processes, Internat. J. numer. methods fluids, 53, 5, 867-894, (2007) · Zbl 1229.76063
[76] Brocchini, M.; Bernetti, R.; Mancinelli, A.; Albertini, G., An efficient solver for nearshore flows based on the WAF method, Coastal eng., 43, 105-129, (2001)
[77] Stoker, J.J., Water waves: the mathematical theory with applications, (1957), Interscience New York · Zbl 0078.40805
[78] Le Roux, A.-Y., Riemann solvers for some hyperbolic problems with a source term, ESAIM proc., 6, 75-90, (1998) · Zbl 0926.76065
[79] Audusse, E.; Bristeau, M.-O., A well-balanced positivity preserving second-order scheme for shallow water flows on unstructured meshes, J. comput. phys., 206, 311-333, (2005) · Zbl 1087.76072
[80] E. Audusse, Modélisation hyperbolique et analyse numérique pour les écoulements en eaux peu profondes, Ph.D. Thesis, Université Paris VI, 2004.
[81] Shu, C.-W., Total-variation-diminishing time discretizations, SIAM J. sci. stat. comput., 9, 1073-1084, (1988) · Zbl 0662.65081
[82] Gottlieb, S.; Shu, C.-W.; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM rev., 43, 89-112, (2001) · Zbl 0967.65098
[83] Spiteri, R.J.; Ruuth, S.J., A new class of optimal high-order strong-stability-preserving time discretization methods, SIAM J. numer. anal., 40, 469-491, (2002) · Zbl 1020.65064
[84] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. comput. phys., 77, 439-471, (1988) · Zbl 0653.65072
[85] Cartwright, J.H.E.; Piro, O., The dynamics of runge – kutta methods, Internat. J. bifur. chaos, 2, 427-449, (1992) · Zbl 0876.65061
[86] Osher, S., Riemann solvers, the entropy condition, and difference approximations, SIAM J. numer. anal., 21, 2, 217-235, (1984) · Zbl 0592.65069
[87] Peterson, T., A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation, SIAM J. numer. anal., 28, 1, 133-140, (1991) · Zbl 0729.65085
[88] Kolgan, N.E., Application of the minimum-derivative principle in the construction of finite-difference schemes for numerical analysis of discontinuous solutions in gas dynamics, Uchen. zap. tsagi, 3, 6, 68-77, (1972), [Sci. Notes Central Inst. Aerodyn]
[89] Kolgan, N.E., Finite-difference schemes for computation of three dimensional solutions of gas dynamics and calculation of a flow over a body under an angle of attack, Uchen. zap. tsagi, 6, 2, 1-6, (1975), [Sci. Notes Central Inst. Aerodyn]
[90] van Leer, B., Towards the ultimate conservative difference scheme V: a second order sequel to godunov’ method, J. comput. phys., 32, 101-136, (1979) · Zbl 1364.65223
[91] T.J. Barth, P.O. Frederickson, Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction, AIAA 90-0013, 1990.
[92] van Leer, B., Upwind and high-resolution methods for compressible flow: from donor cell to residual-distribution schemes, Commun. comput. phys., 1, 192-206, (2006) · Zbl 1114.76049
[93] Lax, P.D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, (1973), SIAM Philadelphia, Penn · Zbl 0268.35062
[94] Harten, A., High resolution schemes for hyperbolic conservation laws, J. comput. phys., 49, 357-393, (1983) · Zbl 0565.65050
[95] Goodman, J.D.; Le Veque, R.J., On the accuracy of stable schemes for 2D conservation laws, Math. comp., 45, 171, 15-21, (1985) · Zbl 0592.65058
[96] Musaferija, S.; Gosman, D., Finite-volume CFD procedure and adaptive error control strategy for grids of arbitrary topology, J. comput. phys., 138, 766-787, (1996) · Zbl 0902.76082
[97] Archambeau, F.; Mehitoua, N.; Sakiz, M., Code saturne: a finite volume code for the computation of turbulent incompressible flows—industrial applications, Int. J. finite vol., 1, 1-62, (2004)
[98] D.G. Holmes, S.D. Connell, Solution of the 2D Navier-Stokes equations on unstructured adaptive grids, in: AIAA 9th Computational Fluid Dynamics Conference, vol. 89-1932-CP, June 1989.
[99] Boris, J.P.; Book, D.L., Flux corrected transport: SHASTA, a fluid transport algorithm that works, J. comput. phys., 11, 38-69, (1973) · Zbl 0251.76004
[100] Barth, T.J.; Jespersen, D.C., The design and application of upwind schemes on unstructured meshes, Aiaa j., 0366, (1989)
[101] S.-E. Kim, B. Makarov, D. Caraeni, A multi-dimensional linear reconstruction scheme for arbitrary unstructured grids, Technical Report, Fluent Inc., 2003.
[102] Ghidaglia, J.-M.; Pascal, F., The normal flux method at the boundary for multidimensional finite volume approximations in CFD, Eur. J. mech. B fluids, 24, 1-17, (2005) · Zbl 1060.76076
[103] F. Dias, D. Dutykh, J.-M. Ghidaglia, Simulation of free surface compressible flows via a two fluid model, in: Proceedings of OMAE2008 27th International Conference on Offshore Mechanics and Arctic Engineering, June 15-20, 2008, Estoril, Portugal, 2008.
[104] Dias, F.; Dutykh, D.; Ghidaglia, J.-M., A two-fluid model for violent aerated flows, Comput. fluids, 39, 283-293, (2010) · Zbl 1242.76329
[105] F. Dias, D. Dutykh, J.-M. Ghidaglia, A compressible two-fluid model for the finite volume simulation of violent aerated flows. Analytical properties and numerical results, Research Report, CMLA, ENS de Cachan, 2008.
[106] C.E. Synolakis, E.N. Bernard, V.V. Titov, U. Kanoglu, F.I. Gonzalez, Standards, criteria, and procedures for NOAA evaluation of tsunami numerical models, Technical Report, NOAA/Pacific Marine Environmental Laboratory, 2007.
[107] Carrier, G.F.; Wu, T.T.; Yeh, H., Tsunami run-up and draw-down on a plane beach, J. fluid mech., 475, 79-99, (2003) · Zbl 1051.86003
[108] Dutykh, D.; Dias, F., Energy of tsunami waves generated by bottom motion, Proc. R. soc. lond. ser. A, 465, 725-744, (2009) · Zbl 1186.86004
[109] Liu, P.L.-F.; Lynett, P.; Synolakis, C.E., Analytical solutions for forced long waves on a sloping beach, J. fluid mech., 478, 101-109, (2003) · Zbl 1033.76004
[110] Dutykh, D.; Dias, F., Viscous potential free-surface flows in a fluid layer of finite depth, C. R. acad. sci. Paris, ser. I, 345, 113-118, (2007) · Zbl 1117.76023
[111] Dutykh, D., Visco-potential free-surface flows and long wave modelling, Eur. J. mech. B fluids, 28, 430-443, (2009) · Zbl 1167.76323
[112] Bresch, D.; Desjardins, B., Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. math. phys., 238, 211-223, (2003) · Zbl 1037.76012
[113] Dutykh, D.; Katsaounis, Th.; Mitsotakis, D., Finite volume schemes for dispersive wave propagation and runup, J. comput. phys., 230, 3035-3061, (2011) · Zbl 1218.65092
[114] R. Poncet, J.C. Vasnier, Sustainable manycore parallelization of an unstructured hydrodynamic code using directive-based languages OpenMP and HMPP (2011) (submitted for publication).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.