Miyaoka, Reiko Isoparametric hypersurfaces with \((g,m)=(6,2)\). (English) Zbl 1263.53049 Ann. Math. (2) 177, No. 1, 53-110 (2013); erratum ibid. (2) 183, No. 3, 1057-1071 (2016). A hypersurface of a space form \(M\) is said to be isoparametric when it has constant principal curvatures. Such surfaces were studied already by Elli Cartan. The most interesting case is \(M = S^n\). It is known that the number \(g\) of different principal curvatures of such hypersurfaces belongs to the set \(\{ 1, 2, 3, 4, 6\}\) and that if \(g = 6\), then the multiplicities \(m\) of all principal curvatures are the same and equal either \(1\) or to \(2\). In this remarkable paper, the author proves the following:{ Theorem 1.1.} All the isoparametric hypersurfaces of the spheres with \((g, m) = (6,2)\) are homogeneous.The similar result for \((g, m) = (6,1)\) has been proven by J. Dorfmeister and E. Neher [Commun. Algebra 13, 2299–2368 (1985; Zbl 0578.53041)]. The author of this paper worked with isoparametric surfaces for several years and produced a number of important results in this area. A reader seriously interested in this topic is adviced to read also earlier papers by R. Miyaoka. Reviewer: Paweł Walczak (Łódź) Cited in 3 ReviewsCited in 58 Documents MSC: 53C40 Global submanifolds 53A05 Surfaces in Euclidean and related spaces Keywords:isoparametric hypersurfaces; homogenous spaces Citations:Zbl 0578.53041 PDF BibTeX XML Cite \textit{R. Miyaoka}, Ann. Math. (2) 177, No. 1, 53--110 (2013; Zbl 1263.53049) Full Text: DOI References: [1] U. Abresch, ”Isoparametric hypersurfaces with four or six distinct principal curvatures. Necessary conditions on the multiplicities,” Math. Ann., vol. 264, pp. 283-302, 1983. · Zbl 0505.53027 [2] &. Cartan, ”Familles de surfaces isoparamétriques dans les espaces à courbure constante,” Ann. Mat. Pura Appl., vol. 17, iss. 1, pp. 177-191, 1938. · Zbl 0020.06505 [3] &. Cartan, ”Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces sphériques,” Math. Z., vol. 45, pp. 335-367, 1939. · Zbl 0021.15603 [4] &. Cartan, ”Sur quelques familles remarquables d’hypersurfaces,” C. R. Congrès Math. Liège, pp. 30-41, 1939. · Zbl 0025.36601 [5] &. Cartan, ”Sur des familles d’hypersurfaces isoparamétriques des espaces sphériques à 5 et à 9 dimensions,” Univ. Nac. Tucumán. Revista A., vol. 1, pp. 5-22, 1940. · Zbl 0025.22603 [6] T. E. Cecil, Q. Chi, and G. R. Jensen, ”Isoparametric hypersurfaces with four principal curvatures,” Ann. of Math., vol. 166, iss. 1, pp. 1-76, 2007. · Zbl 1143.53058 [7] Q. Chi, ”Isoparametric hypersurfaces with four principal curvatures revisited,” Nagoya Math. J., vol. 193, pp. 129-154, 2009. · Zbl 1165.53032 [8] Q. Chi, ”A note on the paper “Isoparametric hypersurfaces with four principal curvatures” [MR2342690],” Pac. J. Appl. Math., vol. 3, iss. 1-2, pp. 127-134, 2011. · Zbl 1243.53094 [9] Q. Chi, ”Isoparametric hypersurfaces with four principal curvatures, II,” Nagoya Math. J., vol. 204, pp. 1-18, 2011. · Zbl 1243.53094 [10] Q. Chi, ”A new look at Condition A,” Osaka J. of Math., pp. 133-166, 2012. · Zbl 1246.53078 [11] Q. Chi, Isoparametric hypersurfaces with four principal curvatures, III, 2011. · Zbl 1243.53094 [12] J. Dorfmeister and E. Neher, ”An algebraic approach to isoparametric hypersurfaces in spheres. I,” Tôhoku Math. J., vol. 35, iss. 2, pp. 187-224, 1983. · Zbl 0507.53038 [13] J. Dorfmeister and E. Neher, ”Isoparametric hypersurfaces, case \(g=6,\;m=1\),” Comm. Algebra, vol. 13, iss. 11, pp. 2299-2368, 1985. · Zbl 0578.53041 [14] D. Ferus, H. Karcher, and H. F. Münzner, ”Cliffordalgebren und neue isoparametrische Hyperflächen,” Math. Z., vol. 177, iss. 4, pp. 479-502, 1981. · Zbl 0443.53037 [15] W. Hsiang and B. H. Lawson Jr., ”Minimal submanifolds of low cohomogeneity,” J. Differential Geometry, vol. 5, pp. 1-38, 1971. · Zbl 0219.53045 [16] S. Immervoll, ”On the classification of isoparametric hypersurfaces with four distinct principal curvatures in spheres,” Ann. of Math., vol. 168, iss. 3, pp. 1011-1024, 2008. · Zbl 1176.53057 [17] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol. II, New York: Interscience Publishers John Wiley & Sons, Inc., 1969, vol. 15. · Zbl 0175.48504 [18] R. Miyaoka, ”Dupin hypersurfaces with six principal curvatures,” Kodai Math. J., vol. 12, iss. 3, pp. 308-315, 1989. · Zbl 0711.53049 [19] R. Miyaoka, ”The linear isotropy group of \(G_2/{ SO}(4)\), the Hopf fibering and isoparametric hypersurfaces,” Osaka J. Math., vol. 30, iss. 2, pp. 179-202, 1993. · Zbl 0815.53070 [20] R. Miyaoka, ”The Dorfmeister-Neher theorem on isoparametric hypersurfaces,” Osaka J. Math., vol. 46, iss. 3, pp. 695-715, 2009. · Zbl 1185.53059 [21] R. Miyaoka, ”Isoparametric geometry and related fields,” in Surveys on Geometry and Integrable Systems, Tokyo: Math. Soc. Japan, 2008, vol. 51, pp. 315-337. · Zbl 1161.53047 [22] R. Miyaoka, ”Geometry of \(G_2\) orbits and isoparametric hypersurfaces,” Nagoya Math. J., vol. 203, pp. 175-189, 2011. · Zbl 1231.53051 [23] H. F. Münzner, ”Isoparametrische Hyperflächen in Sphären. I,” Math. Ann., vol. 251, iss. 1, pp. 57-71, 1980. · Zbl 0417.53030 [24] H. F. Münzner, ”Isoparametrische Hyperflächen in Sphären. II. Über die Zerlegung der Sphäre in Ballbündel,” Math. Ann., vol. 256, iss. 2, pp. 215-232, 1981. · Zbl 0438.53050 [25] K. Nomizu, ”Sur les algèbres de Lie de générateurs de Killing et l’homogénéité d’une variété riemannienne,” Osaka Math. J., vol. 14, pp. 45-51, 1962. · Zbl 0103.38603 [26] K. Nomizu, ”Élie Cartan’s work on isoparametric families of hypersurfaces,” in Differential Geometry, Providence, R.I.: Amer. Math. Soc., 1975, vol. 27, pp. 191-200. · Zbl 0318.53052 [27] C. Olmos, ”Isoparametric submanifolds and their homogeneous structures,” J. Differential Geom., vol. 38, iss. 2, pp. 225-234, 1993. · Zbl 0791.53051 [28] H. Ozeki and M. Takeuchi, ”On some types of isoparametric hypersurfaces in spheres. II,” Tôhoku Math. J., vol. 28, iss. 1, pp. 7-55, 1976. · Zbl 0359.53012 [29] H. Reckziegel, ”Krümmungsflächen von isometrischen Immersionen in Räume konstanter Krümmung,” Math. Ann., vol. 223, iss. 2, pp. 169-181, 1976. · Zbl 0319.53042 [30] I. M. Singer, ”Infinitesimally homogeneous spaces,” Comm. Pure Appl. Math., vol. 13, pp. 685-697, 1960. · Zbl 0171.42503 [31] C. Terng, ”Isoparametric submanifolds and their Coxeter groups,” J. Differential Geom., vol. 21, iss. 1, pp. 79-107, 1985. · Zbl 0615.53047 [32] G. Thorbergsson, ”Isoparametric foliations and their buildings,” Ann. of Math., vol. 133, iss. 2, pp. 429-446, 1991. · Zbl 0727.57028 [33] G. Thorbergsson, ”A survey on isoparametric hypersurfaces and their generalizations,” in Handbook of Differential Geometry, Vol. I, Amsterdam: North-Holland, 2000, pp. 963-995. · Zbl 0979.53002 [34] S. Yau, ”Open problems in geometry,” in Chern-A Great Geometer of the Twentieth Century, Int. Press, Hong Kong, 1992, pp. 275-319. · Zbl 0826.01010 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.