# zbMATH — the first resource for mathematics

Minimal area ellipses in the hyperbolic plane. (English) Zbl 1291.52015
The departing point of this paper is a well-known result in convex geometry stating that a full-dimensional compact subset $$F$$ of the Euclidean plane can be enclosed by a unique ellipse $$C$$ of minimal area. Although the proof of this theorem is not difficult in the Euclidean plane, trying to extend it to compact subsets of the elliptic or hyperbolic plane presents a sufficient challenge. In their earlier paper [Adv. Geom. 12, No. 4, 665–684 (2012; Zbl 1291.51021)], the authors examined the situation in the elliptic plane and showed (using some complicated estimate techniques) that uniqueness can be guaranteed only for “sufficiently small and round sets $$F$$.”
In the paper under review, the authors prove an analogous result for compact sets in the hyperbolic plane, producing appropriate uniqueness results for enclosing ellipses of minimal area provided some sufficient conditions are met. Namely, an enclosing ellipse of minimal area (not assumed a priori unique) of a full-dimensional compact set $$F$$ in the hyperbolic plane is unique if there exist positive numbers $$\rho$$ and $$R$$ such that the semiaxes lengths of minimal ellipses are in the interval $$[\rho , \, R]$$ and the values $$v_1:= \coth^2R$$ and $$v_2:= \coth^2{\rho}$$ satisfy the inequality $$- 13v_1^2 + 5 v_1 v_2 - 3 v_1 + 7 v_2 + 4 \leq 0$$.
##### MSC:
 52A40 Inequalities and extremum problems involving convexity in convex geometry 52A55 Spherical and hyperbolic convexity 51M10 Hyperbolic and elliptic geometries (general) and generalizations 51M25 Length, area and volume in real or complex geometry 52A38 Length, area, volume and convex sets (aspects of convex geometry)
##### Keywords:
hyperbolic geometry; enclosing ellipse; minimal area; uniqueness
Full Text:
##### References:
  Ball K.M.: Ellipsoids of maximal volume in convex bodies. Geom. Dedicata 41(2), 241–250 (1992) · Zbl 0747.52007  Bastero J., Romance M.: John’s decomposition of the identity in the non-convex case. Positivity 6(1), 1–16 (2002) · Zbl 1018.52004  Callahan J.J.: The Geometry of Spacetime. An Introduction to Special and General Relativity. Springer, New York (2000) · Zbl 0937.83001  Davis C.: All convex invariant functions of Hermitian matrices. Arch. Math. 8(4), 276–278 (1957) · Zbl 0086.01702  Gordon Y., Litvak A.E., Meyer M., Pajor A.: John’s decomposition of the identity in the general case and applications. J. Differ. Geom. 68(1), 99–119 (2004) · Zbl 1120.52004  Gruber, P.M.: Results of Baire category type in convexity. In: Goodmann, J., Lutwak, E., Malkewitsch, E., Pollack, J. (eds.) Discrete Geometry and Convexity, pp. 163–169. New York Academy of Sciences (1985)  Gruber, P.M.: Baire categories in convexity. In: Gruber, P.M., Wills, J. (eds.) Handbook of Convex Geometry, vol. B, pp. 1327–1346. Elsevier, Amsterdam (1993) · Zbl 0791.52002  Gruber P.M.: Application of an idea of Voronoi to John type problems. Adv. Math. 218(2), 309–351 (2008) · Zbl 1144.52003  Gruber, P.M.: John and Loewner ellipsoids. Discrete Comput. Geom. (2011). doi: 10.1007/s00454-011-9354-8 · Zbl 1241.52002  Gruber P.M., Schuster F.E.: An arithmetic proof of John’s ellipsoid theorem. Arch. Math. 85, 82–88 (2005) · Zbl 1086.52002  John, F.: Extremum problems with inequalities as subsidary conditions. In: Studies and Essays. Courant Anniversary Volume, pp. 187–204. Interscience, New York (1948)  Lewis A.S.: Convex analysis on the Hermitian matrices. SIAM J. Optim. 6(1), 164–177 (1996) · Zbl 0849.15013  Lutwak E., Yang D., Zhang G.: L p John ellipsoids. Proc. Lond. Math. Soc. 90, 497–520 (2005) · Zbl 1074.52005  Özdemir M., Ergin A.A.: Rotations with unit timelike quaternions in Minkowski 3-space. J. Geom. Phys. 56(2), 322–336 (2006) · Zbl 1088.53010  Reynold W.F.: Hyperbolic geometry on a hyperboloid. Am. Math. Monthly 100(5), 442–455 (1993) · Zbl 0789.51020  Schröcker H.P.: Minimal enclosing hyperbolas of line sets. Beitr. Algebra Geom. 48(2), 367–381 (2007) · Zbl 1167.53003  Schröcker H.P.: Uniqueness results for minimal enclosing ellipsoids. Comput. Aided Geom. Design 25(9), 756–762 (2008) · Zbl 1172.52300  Weber M.J., Schröcker H.P.: Davis’ convexity theorem and extremal ellipsoids. Beitr. Algebra Geom. 51(1), 263–274 (2010) · Zbl 1202.52003  Weber, M.J., Schröcker, H.P.: Minimal area conics in the elliptic plane. Adv. Geom. (2011, accepted). http://arxiv.org/abs/1008.4285 · Zbl 1291.51021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.