×

zbMATH — the first resource for mathematics

Application of the MFS to inverse obstacle scattering problems. (English) Zbl 1259.76046
Summary: In this paper, the method of fundamental solutions (MFS) is used to detect the shape, size and location of a scatterer embedded in a host acoustic homogeneous medium from scant measurements of the scattered acoustic pressure in the vicinity of the obstacle. A nonlinear constrained minimization regularized MFS technique is proposed for the numerical solution of the inverse problem in question. The stability of the technique is investigated by inverting measurements contaminated by random noise. The results of several numerical experiments are presented.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76Q05 Hydro- and aero-acoustics
65N80 Fundamental solutions, Green’s function methods, etc. for boundary value problems involving PDEs
65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
Software:
HYBRJ; minpack
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alves, C.J.S., Inverse scattering with spherical incident waves, (), 502-504 · Zbl 0942.35038
[2] Alves, C.J.S.; Martins, N.F.M., Reconstruction of inclusions or cavities in potential problems using the MFS, (), 51-73
[3] Alves, C.J.S.; Martins, N.F.M., The direct method of fundamental solutions and the inverse kirsch – kress method for the reconstruction of elastic inclusions or cavities, J integr equations appl, 21, 153-178, (2009) · Zbl 1166.74008
[4] Ben Hassen, M.F.; Erhard, K.; Potthast, R., The singular sources method for 3D inverse acoustic obstacle scattering problems, IMA J appl math, 75, 1-6, (2010) · Zbl 1186.35237
[5] Bogomolny, A., Fundamental solutions method for elliptic boundary value problems, SIAM J numer anal, 22, 644-669, (1985) · Zbl 0579.65121
[6] Borman, D.; Ingham, D.B.; Johansson, B.T.; Lesnic, D., The method of fundamental solutions for detection of cavities in EIT, J integr equations appl, 21, 381-404, (2009) · Zbl 1189.78059
[7] Colton, D.; Kress, R., Inverse acoustic and electromagnetic scattering theory, (1998), Springer-Verlag New York · Zbl 0893.35138
[8] Colton, D.; Sleeman, B.D., Uniqueness theorems for the inverse problem of acoustic scattering, IMA J appl math, 31, 253-259, (1983) · Zbl 0539.76086
[9] Colton, D.; Coyle, J.; Mark, P., Recent developments in inverse acoustic scattering theory, SIAM rev, 42, 369-414, (2000) · Zbl 0960.76081
[10] Erhard, K.; Potthast, R., The point source method for reconstructing an inclusion from boundary measurements in electrical impedance tomography and acoustic scattering, Inverse probl, 19, 1139-1157, (2003) · Zbl 1054.35126
[11] Fairweather, G.; Karageorghis, A.; Martin, P.A., The method of fundamental solutions for scattering and radiation problems, Eng anal bound elem, 27, 759-769, (2003) · Zbl 1060.76649
[12] Garbow, B.S.; Hillstrom, K.E.; Moré, J.J., MINPACK project, (1980), Argonne National Laboratory
[13] Gintides, D., Local uniqueness for the inverse scattering problem in acoustics via the faber – krahn inequality, Inverse probl, 21, 1195-1205, (2005) · Zbl 1090.76065
[14] Hansen, P.C.; O’Leary, D.P., The use of the L-curve in the regularization of discrete ill-posed problems, SIAM J sci comput, 14, 1487-1503, (1993) · Zbl 0789.65030
[15] Ivanyshyn, O., Shape reconstruction of acoustic obstacles from the modulus of the far field pattern, Inverse probl and imaging, 1, 609-622, (2007) · Zbl 1194.35502
[16] Ivanyshyn O, Johansson BT. A coupled boundary integral equation procedure for reconstruction of a sound-soft obstacle. J Comput Appl Math, in press, doi:10.1016/j.cam.2009.08.007 · Zbl 1135.65392
[17] Ivanyshyn, O.; Kress, R.; Serranho, P., Huygens’ principle and iterative methods in inverse obstacle scattering, Adv comput math, 33, 413-429, (2010) · Zbl 1205.65304
[18] Johansson, D.T.; Sleeman, B.D., Reconstruction of an acoustically sound-soft obstacle from one incident field and the far-field pattern, IMA J appl math, 72, 96-112, (2007) · Zbl 1121.76059
[19] Karageorghis, A., The method of fundamental solutions for the calculation of the eigenvalues of the Helmholtz equation, Appl math lett, 14, 837-842, (2001) · Zbl 0984.65111
[20] Karageorghis, A.; Lesnic, D., Detection of cavities using the method of fundamental solutions, Inverse probl sci eng, 17, 803-820, (2009) · Zbl 1175.65130
[21] Karageorghis, A.; Lesnic, D., The method of fundamental solutions for the inverse conductivity problem, Inverse probl sci eng, 18, 567-583, (2010) · Zbl 1194.65139
[22] Karageorghis, A.; Lesnic, D., The pressure-streamfunction MFS formulation for the detection of an obstacle immersed in a two-dimensional Stokes flow, Adv appl math mech, 2, 183-199, (2010) · Zbl 1262.65188
[23] Karageorghis, A.; Lesnic, D., The method of fundamental solutions for inverse obstacle acoustic scattering, (), 193-202
[24] Kirsch, A., Introduction to the mathematical theory of inverse problems, (1996), Springer-Verlag New York · Zbl 0865.35004
[25] Kirsch, A.; Kress, R., An optimization method in inverse acoustic scattering, (), 3-18
[26] Kirsch, A.; Kress, R., Uniqueness in inverse obstacle scattering, Inverse probl, 9, 285-299, (1993) · Zbl 0787.35119
[27] Kondapalli, P.; Shippy, D.J.; Fairweather, G., Analysis of acoustic scattering in fluids and solids by the method of fundamental solutions, J acoust soc am, 91, 1844-1854, (1992)
[28] Koopmann, G.H.; Song, L.; Fahline, J.B., A method for computing acoustic fields based on the principle of wave superposition, J acoust soc am, 86, 2433-2438, (1992)
[29] Kress, R., Integral equation method in inverse obstacle scattering, Eng anal bound elem, 15, 171-179, (1995)
[30] Kress R. Integral equation method in inverse acoustic and electromagnetic scattering. In: Ingham DB, Wrobel LC, editors. Boundary integral formulations for inverse analysis. 1997. p. 67-93. · Zbl 0909.65096
[31] Kress, R.; Mohsen, A., On the simulation source technique for exterior problems in acoustics, Math meth appl sci, 8, 585-597, (1986) · Zbl 0626.35019
[32] Kress, R.; Zinn, A., On the numerical solution of the three-dimensional inverse obstacle scattering problem, J comput appl math, 42, 49-61, (1992) · Zbl 0774.65092
[33] Martins, N.F.M.; Silvestre, A.L., An iterative MFS approach for the detection of immersed obstacles, Eng anal bound elem, 32, 517-524, (2008) · Zbl 1244.76082
[34] Na SW, Kallivokas LF. Shape detection in inverse acoustic scattering problems. In: 16th ASCE engineering mechanics conference. University of Washington: Seattle, USA; July 16-18 2003.
[35] Pike, R.; Sabatier, P., Scattering: scattering and inverse scattering in pure and applied science, (2002), Academic Press San Diego · Zbl 1012.00006
[36] Potthast, R., Fréchet differentiability of boundary integral operators in inverse acoustic scattering, Inverse probl, 10, 431-437, (1994) · Zbl 0805.35157
[37] Reutskiy, S. Yu., The method of fundamental solutions for Helmholtz eigenvalue problems in simply and multiply connected domains, Eng anal bound elem, 30, 150-159, (2006) · Zbl 1195.65204
[38] Singer, H.; Steinbigler, H.; Weiss, P., A charge simulation method for the calculation of high voltage fields, IEEE trans power apparatus syst, 93, 1660-1668, (2006)
[39] Zhang, S.; Jin, J., Computation of special functions, (1996), John Wiley New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.