×

Knot tightening by constrained gradient descent. (English) Zbl 1261.49007

Summary: We present new computations of approximately lengthminimizing polygons with fixed thickness. These curves model the centerlines of “tight” knotted tubes with minimal length and fixed circular cross-section. Our curves approximately minimize the ropelength (or quotient of length and thickness) for polygons in their knot types. While previous authors have minimized ropelength for polygons using simulated annealing, the new idea in our code is to minimize length over the set of polygons of thickness at least one using a version of constrained gradient descent. We rewrite the problem in terms of minimizing the length of the polygon subject to an infinite family of differentiable constraint functions. We prove that the set of variations of a polygon of thickness one that does not decrease thickness to first order is a finitely generated polyhedral cone, and give an explicit set of generators. Using this cone, we give a first-order minimization procedure and a Karush-Kuhn-Tucker criterion for polygonalropelength criticality. Our main numerical contribution is a set of 379 almost-critical knots and links, including all prime knots with ten and fewer crossings and all prime links with nine and fewer crossings. For links, these are the first published ropelength figures, and for knots they improve on existing figures. We give new maps of the self-contacts of these knots and links, and discover some highly symmetric tight knots with particularly simple-looking self-contact maps.

MSC:

49M25 Discrete approximations in optimal control
49Q10 Optimization of shapes other than minimal surfaces
53A04 Curves in Euclidean and related spaces
57M25 Knots and links in the \(3\)-sphere (MSC2010)

Software:

TAUCS; KnotPlot; TSNNLS
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] Ashton [Ashton and Cantarella 05] Ted, Physical and Numerical Models in Knot Theory, Ser. Knots Everything 36 pp 323– (2005)
[2] Ashton, [Ashton et al. 11] Ted, Cantarella, Jason, Piatek, Michael and Rawdon, Eric. 2011. ”Atlas of Tight Links.”. Available online (http://www.jasoncantarella.com/webpage/index.php?title=papers). · Zbl 1335.76013
[3] DOI: 10.1140/epjb/e2008-00443-y · Zbl 1188.82155
[4] Björck [Björck 96] Åke, Numerical Methods for Least Squares Problems (1996)
[5] Kenneth [Brakke 92] A Brakke, Experiment. Math. 1 pp 141– (1992)
[6] DOI: 10.1016/0166-8641(94)00024-W · Zbl 0829.57005
[7] DOI: 10.1103/PhysRevE.70.011803
[8] Roman [Buniy and Kephart 03] V Buniy, Phys. Lett. 576 pp 127– (2003)
[9] DOI: 10.1007/s00222-002-0234-y · Zbl 1036.57001
[10] DOI: 10.1109/VISUAL.2005.1532844
[11] DOI: 10.2140/gt.2006.10.2055 · Zbl 1129.57006
[12] Cantarella, [Cantarella et al. 08] Jason, Piatek, Michael and Rawdon, Eric. 2008. ”TSNNLS: A Solver for large sparse least-squares problems with Non-negative Variables.” arXiv:cs.MS/0408029”.
[13] Cantarella [Cantarella et al. 11] Jason, In preparation (2011)
[14] Carlen [Carlen et al. 05] M., Physical and Numerical Models in Knot Theory, Ser. Knots Everything 36 pp 75– (2005)
[15] Chern [Chern 67] S. S., Studies in Global Geometry and Analysis pp 16– (1967)
[16] DOI: 10.1090/S0002-9947-1975-0367131-6
[17] DOI: 10.2140/gt.2006.10.1 · Zbl 1108.57004
[18] DOI: 10.1142/S0218216503002275 · Zbl 1028.57007
[19] DOI: 10.1073/pnas.0330884100 · Zbl 1063.82013
[20] Manfredo [do Carmo 76] P, Differential Geometry of Curves and Surfaces (1976)
[21] DOI: 10.1016/j.topol.2007.07.004 · Zbl 1141.57002
[22] DOI: 10.1090/S0002-9947-1959-0110078-1
[23] Fletcher [Fletcher 01] R., Practical Methods of Optimization, second ed. (2001) · Zbl 0988.65043
[24] Gilbert, [Gilbert 11] Brian. 2011. ”Ideal Knot and Link Data.”. Available online (http://katlas.math.toronto.edu/wiki/Ideal_knots).
[25] DOI: 10.1142/S0218216503002354 · Zbl 1028.57008
[26] Gonzalez [Gonzalez and Maddocks 99] Oscar, Proc. Natl. Acad. Sci. USA 96 pp 4– (1999)
[27] DOI: 10.1007/s005260100089 · Zbl 1006.49001
[28] DOI: 10.1038/384142a0 · Zbl 1369.57010
[29] Kawauchi [Kawauchi 96] Akio, A Survey of Knot Theory (1996) · Zbl 0861.57001
[30] Krötenheerdt [Krötenheerdt and Veit 76] Otto, Wiss. Beitr. Martin-Luther-Univ. Halle-Wittenberg Reihe M Math. 7 pp 61– (1976)
[31] Krötenheerdt [Krötenheerdt and Veit 05] Otto, Physical and Numerical Models in Knot Theory, Ser. Knots Everything 36 pp 1– (2005)
[32] Laurie [Laurie 98] Ben, Ideal knots, Ser. Knots Everything 19 pp 42– (1998) · Zbl 0943.57001
[33] DOI: 10.1016/S0166-8641(97)00210-1 · Zbl 0924.57011
[34] DOI: 10.1137/0147080 · Zbl 0627.73100
[35] DOI: 10.1016/0022-247X(67)90163-1 · Zbl 0149.16701
[36] DOI: 10.1103/PhysRevLett.82.3372
[37] DOI: 10.1002/cpa.3160480402 · Zbl 0845.57023
[38] DOI: 10.1147/rd.345.0770
[39] DOI: 10.1145/355984.355989 · Zbl 0478.65016
[40] Michael [Panik 93] J Panik, Theory and Decision Library, Series B: Mathematical and Statistical Methods 24 (1993)
[41] Pierański [Pierań-ski 98] Piotr, Ideal Knots, Ser. Knots Everything 19 pp 20– (1998)
[42] DOI: 10.1088/1367-2630/3/1/310
[43] DOI: 10.1090/S0025-5718-1994-1250776-4
[44] Rawdon [Rawdon 97] Eric, PhD thesis (1997)
[45] Eric [Rawdon 98] J Rawdon, Ideal Knots, Ser. Knots Everything 19 pp 143– (1998)
[46] DOI: 10.1142/S0218216500000062 · Zbl 0999.57010
[47] Eric [Rawdon 03] J Rawdon, Experiment. Math. 12 pp 287– (2003) · Zbl 1073.57003
[48] DOI: 10.1137/0109044 · Zbl 0231.90048
[49] DOI: 10.1007/s00526-003-0216-y · Zbl 1352.58004
[50] Stoer [Stoer and Witzgall 70] Josef, Convexity and Optimization in Finite Dimensions. I. Grundlehren der Mathematischen Wissenschaften 163 (1970)
[51] John [Sullivan 02] M Sullivan, Physical Knots: Knotting, Linking, and Folding Geometric Objects in (Las Vegas, NV, 2001), Contemp. Math. 304 pp 181– (2002)
[52] Toledo, [Toledo et al. 03] Sivan, Rotkin, Vladimir and Chen, Doron. 2003. ”TAUCS: A Library of Sparse Linear Solvers.” Available online (http://www.tau.ac.il/stoledo/taucs/). · Zbl 1047.42022
[53] Zoutendijk [Zoutendijk 59] G., J. Roy. Statist. Soc. Ser. B 21 pp 338– (1959)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.