Maeshima, Nobuya; Hino, Ken-ichi Parallelization of the R-matrix propagation method for the study of intense-laser-driven semiconductor superlattices. (English) Zbl 1264.82158 Comput. Phys. Commun. 183, No. 1, 8-14 (2012). Summary: The parallelization of the R-matrix propagation method for the study of intense-laser-driven semiconductor superlattices is described. We focus on photo-dressed excitonic electron-hole pair states related to the optical properties of the system concerned. Here, we parallelize the loop of propagation sectors, which is regarded as a rate-determining step in the whole calculation: in each sector calculated, the R-matrix Green functions are playing a key role. The evaluated parallelization efficiency is found to besufficiently high, compared with a conventional algorithm without such parallelization. Restriction of this efficiency arising from the inter-core communications is also discussed. Further, it is shown that by virtue of the present parallelization, we readily obtain high-resolution excitonic absorption spectra revealing a conspicuous dynamic Fano resonance. MSC: 82D37 Statistical mechanical studies of semiconductors 78A60 Lasers, masers, optical bistability, nonlinear optics 82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics 65Y05 Parallel numerical computation 82-08 Computational methods (statistical mechanics) (MSC2010) 35Q82 PDEs in connection with statistical mechanics Keywords:semiconductor superlattice; optical properties; exciton; R-matrix; parallelization Software:PRMAT PDF BibTeX XML Cite \textit{N. Maeshima} and \textit{K.-i. Hino}, Comput. Phys. Commun. 183, No. 1, 8--14 (2012; Zbl 1264.82158) Full Text: DOI References: [1] Mysyrowicz, A.; Hulin, D.; Antonetti, A.; Migus, A.; Masselink, W.T.; Morko, H., Phys. rev. lett., 56, 2748, (1986) [2] Danielson, J.R.; Lee, Y.-S.; Prineas, J.P.; Steiner, J.T.; Kira, M.; Koch, S.W., Phys. rev. lett., 99, 237401, (2007) [3] Kroner, M.; Govorov, A.O.; Remi, S.; Biedermann, B.; Seidl, S.; Badolato, A.; Petroff, P.M.; Zhang, W.; Barbour, R.; Gerardot, B.D.; Warburton, R.J.; Karrai, K., Nature, 451, 311, (2008) [4] Hirori, H.; Nagai, M.; Tanaka, K., Phys. rev. B, 81, 081305(R), (2010) [5] Shinokita, K.; Hirori, H.; Nagai, M.; Satoh, N.; Kadoya, Y.; Tanaka, K., Appl. phys. lett., 97, 211902, (2010) [6] Wagner, M.; Schneider, H.; Stehr, D.; Winnerl, S.; Andrews, A.M.; Schartner, S.; Strasser, G.; Helm, M., Phys. rev. lett., 105, 167401, (2010) [7] Dignam, M.M., Phys. rev. B, 59, 5770, (1999) [8] Meier, T.; Kolbe, H.J.; Thränhardt, A.; Weiser, G.; Thomas, P.; Koch, S.W., Physica E, 7, 267, (2000) [9] Wang, D.; Zhang, A.; Yang, L.; Dignam, M.M., Phys. rev. B, 777, 115307, (2008) [10] Yashima, K.; Oka, K.; Hino, K.; Maeshima, N.; Tong, X.M., Solid state commun., 149, 229, (2009) [11] Haug, H.; Koch, S.W., Quantum theory of the optical and electronic properties of semiconductors, (2009), Singapore World Scientific, (Chapter 10) · Zbl 1166.82001 [12] Burke, P.G.; Berrinton, K.A., Atomic and molecular processes: an R-matrix approach, (1993), IOP Publishing Bristol [13] Hino, K.; Hino, K., Phys. rev. B, Phys. rev. B, 63, 119901, (2001) [14] Hino, K., Phys. rev. B, 64, 075318, (2001) [15] Kukuu, A.; Amano, T.; Karasawa, T.; Maeshima, N.; Hino, K., Phys. rev. B, 82, 115315, (2010) [16] Burke, V.M.; Noble, C.J., Comput. phys. commun., 84, 19, (1994) [17] Sunderland, A.G.; Heggarty, J.W.; Noble, C.J.; Scott, N.S., Comput. phys. commun., 114, 183, (1998) [18] Sunderland, A.G.; Noble, C.J.; Burke, V.M.; Burke, P.G., Comput. phys. commun., 145, 311, (2002) [19] Wilkinson, B.; Allen, M., Parallel programming: techniques and applications using networked workstations and parallel computers, (2004), Prentice Hall, (Chapter 3) [20] Hino, K., J. phys. soc. jpn., 67, 3159, (1998) [21] Dunlap, D.H.; Kenkre, V.M., Phys. rev. B, 34, 3625, (1986) [22] Liu, R.-B.; Zhu, B.-F., J. phys.: condens. matter, 12, L741, (2000) [23] N. Maeshima, K. Hino, unpublished. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.