Bridgeland, Tom Quantum groups via Hall algebras of complexes. (English) Zbl 1268.16017 Ann. Math. (2) 177, No. 2, 739-759 (2013). Starting from the category \(\mathcal A\) of finite dimensional representations (over a finite field) of a finite acyclic quiver \(Q\), the author describes an embedding of the quantum group associated to the derived Kac-Moody Lie algebra of \(Q\) into the reduced version of the localization of the twisted Hall algebra of the category of projective \(\mathbb Z_2\)-graded complexes in \(\mathcal A\). It is shown that this embedding is an isomorphism if and only if \(Q\) is a simply laced Dynkin diagram. Reviewer: Volodymyr Mazorchuk (Uppsala) Cited in 5 ReviewsCited in 44 Documents MSC: 16G20 Representations of quivers and partially ordered sets 17B37 Quantum groups (quantized enveloping algebras) and related deformations 17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras 17B05 Structure theory for Lie algebras and superalgebras Keywords:Hall algebras; quantum groups; graded complexes; Kac-Moody Lie algebras; quantum enveloping algebras; quiver representations; Dynkin diagrams PDF BibTeX XML Cite \textit{T. Bridgeland}, Ann. Math. (2) 177, No. 2, 739--759 (2013; Zbl 1268.16017) Full Text: DOI arXiv References: [1] I. Burban and O. Schiffmann, ”On the Hall algebra of an elliptic curve, I,” Duke Math. J., vol. 161, iss. 7, pp. 1171-1231, 2012. · Zbl 1286.16029 [2] I. Burban and O. Schiffmann, ”Two descriptions of the quantum affine algebra \(U_v(\widehat{\mathfrak{sl}}_2)\) via Hall algebra approach,” Glasg. Math. J., vol. 54, iss. 2, pp. 283-307, 2012. · Zbl 1247.17010 [3] T. Cramer, ”Double Hall algebras and derived equivalences,” Adv. Math., vol. 224, iss. 3, pp. 1097-1120, 2010. · Zbl 1208.16016 [4] V. G. Drinfel\('\)d, ”Quantum groups,” in Proceedings of the International Congress of Mathematicians, Vol. 1, 2, Providence, RI, 1987, pp. 798-820. [5] J. A. Green, ”Hall algebras, hereditary algebras and quantum groups,” Invent. Math., vol. 120, iss. 2, pp. 361-377, 1995. · Zbl 0836.16021 [6] A. Joseph, Quantum groups and their primitive ideals, New York: Springer-Verlag, 1995. · Zbl 0808.17004 [7] M. Kapranov, ”Heisenberg doubles and derived categories,” J. Algebra, vol. 202, iss. 2, pp. 712-744, 1998. · Zbl 0910.18005 [8] G. Lusztig, Introduction to Quantum Groups, Boston, MA: Birkhäuser, 1993, vol. 110. · Zbl 0788.17010 [9] L. Peng and J. Xiao, ”Root categories and simple Lie algebras,” J. Algebra, vol. 198, iss. 1, pp. 19-56, 1997. · Zbl 0893.16007 [10] L. Peng and J. Xiao, ”Triangulated categories and Kac-Moody algebras,” Invent. Math., vol. 140, iss. 3, pp. 563-603, 2000. · Zbl 0966.16006 [11] C. M. Ringel, ”Hall algebras and quantum groups,” Invent. Math., vol. 101, iss. 3, pp. 583-591, 1990. · Zbl 0735.16009 [12] C. M. Ringel, ”Green’s theorem on Hall algebras,” in Representation Theory of Algebras and Related Topics, Providence, RI: Amer. Math. Soc., 1996, vol. 19, pp. 185-245. · Zbl 0860.16026 [13] O. Schiffmann, Lectures on Hall algebras. · Zbl 1309.18012 [14] B. Toën, ”Derived Hall algebras,” Duke Math. J., vol. 135, iss. 3, pp. 587-615, 2006. · Zbl 1117.18011 [15] J. Xiao, ”Drinfeld double and Ringel-Green theory of Hall algebras,” J. Algebra, vol. 190, iss. 1, pp. 100-144, 1997. · Zbl 0874.16026 [16] J. Xiao and F. Xu, ”Hall algebras associated to triangulated categories,” Duke Math. J., vol. 143, iss. 2, pp. 357-373, 2008. · Zbl 1168.18006 [17] S. Yanagida, A note on Bridgeland’s Hall algebra of two-periodic complexes. · Zbl 1403.16011 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.