zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Qualitative analysis of the SICR epidemic model with impulsive vaccinations. (English) Zbl 1318.92049
Summary: Control of epidemic infections is a very urgent issue today. To develop an appropriate strategy for vaccinations and effectively prevent the disease from arising and spreading, we proposed a modified susceptible-infected-removed model with impulsive vaccinations. For the model without vaccinations, we proved global stability of one of the steady states depending on the basic reproduction number $R_{0}$. As typically in the epidemic models, the threshold value of $R_{0}$ is 1. If $R_{0}$ is greater than 1, then the positive steady state called endemic equilibrium exists and is globally stable, whereas for smaller values of $R_{0}$, it does not exist, and the semi-trivial steady state called disease-free equilibrium is globally stable. Using impulsive differential equation comparison theorem, we derived sufficient conditions under which the infectious disease described by the considered model disappears ultimately. The analytical results are illustrated by numerical simulations for Hepatitis B virus infection that confirm the theoretical possibility of the infection elimination because of the proper vaccinations policy.

34A37Differential equations with impulses
34C60Qualitative investigation and simulation of models (ODE)
Full Text: DOI