×

On two problems of quantum logics. (English) Zbl 0616.03038

S. P. Gudder has proved [J. Math. Anal. Appl. 20, 48-61 (1967; Zbl 0171.156)] that the strong independence of observables in a state implies the independence. The converse was proved only for very special cases. The author shows that the restrictions can be removed. He also solves a problem concerning joint distributions, posed in his own paper [Math. Slovaca 31, 347-353 (1981; Zbl 0474.03033)].
Reviewer: J.Cirulis

MSC:

03G12 Quantum logic
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
PDFBibTeX XMLCite
Full Text: EuDML

References:

[1] DRISCH T.: Generalization of Gleason’s theorem. Inter. J. Theor, Phys., 18, 1978, 4, 239-243. · Zbl 0452.46036 · doi:10.1007/BF00671760
[2] DVUREČENSKIJ A.: On m-joint distribution. Math. Slovaca, 31, 1981, 4, 347-353. · Zbl 0474.03033
[3] DVUREČENSKIJ A., PULMANNOVA S.: On joint distributions of observables. Math. Slovaca, 32, 1982, 2, 155-166. · Zbl 0495.60007
[4] DVUREČENSKIJ A., PULMANNOVA S.: Connection between joint distribution and compatibility. Reports. Math. Phys., 18, 1980, 3.
[5] EILERS M., HORST E.: The theorem of Gleason for nonseparable Hilbert spaces. Inter. J. Theor. Phys., 13, 1975, 6, 419-424. · Zbl 0345.46021 · doi:10.1007/BF01808324
[6] GREECHIE R.: On generating distributive sublattices of orthomodular lattices. Proc. Amer. Math. Soc., 67, 1977, 1, 17-22. · Zbl 0371.06008 · doi:10.2307/2041234
[7] GUDDER S. P.: Uniqueness and existence properties of unbounded observables. Pac. J. Math., 19, 1966, 1, 81-93. · Zbl 0149.23603 · doi:10.2140/pjm.1966.19.81
[8] GUDDER S. P.: Hilbert space, independence and generalized probability. J. Math. Anal. Appl., 20, 1967, 1, 48-61. · Zbl 0171.15602
[9] GUDDER S. P.: Joint distributions of observables. J. Math, and Mech., 18, 1968, 4, 325-335. · Zbl 0241.60092
[10] GUDDER S. P.: Some unsolved problems in quantum logics. Mathematical foundations of quantum theory. A. R. Marlow, p. 87-103, Academic Press, NY. 1978.
[11] PULMANNOVÁ S.: Compatibility and partial compatibility in quantum logics. Ann. Inst. Henri Poincare, 34, 1981, 4, 391-403. · Zbl 0469.03045
[12] PULMANNOVÁ S., DVUREČENSKIJ A.: Uncertainty principle and jointsdistributions of observables. Ann. Inst. Henri Poincaré, 42, 1985, 3, 253-265. · Zbl 0581.60003
[13] PTÁK P.: Spaces of observables. Czech. Math. J., 34 (109), 1984, 552-561. · Zbl 0572.28007
[14] SCHATTEN R.: Norm ideals of completely continuous operators. 2nd Springer Verlag 1970. · Zbl 0188.44103
[15] URBANIK K.: Joint distributions of observables in quantum mechanics. Stud. Math., 21, 1961, 117-131. · Zbl 0099.22404
[16] VARADARAJAN V. S.: Geometry of quantum theory. Vol. 1., Van Nostrand, Princeton NY. 1968. · Zbl 0155.56802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.