×

On the \(l\)-adic representations associated to Hilbert modular forms. (Sur les représentations \(l\)-adiques associées aux formes modulaires de Hilbert.) (French) Zbl 0616.10025

Let \(\pi =\otimes_{v}\pi_ v\) be a cuspidal automorphic representation of \(\text{GL}_ 2(F_{{\mathbb A}})\) where \(F_{{\mathbb A}}\) is the ring of adeles of a totally real algebraic number field \(F\) of degree \(d\) over \({\mathbb Q}\), of the same type as representations corresponding to Hilbert modular forms of weight \((k_ 1,...,k_ d)\), i.e. whose local components \(\pi_ v\) for each of the \(d\) Archimedean places \(v\) of \(F\) are essentially square integrable representations of \(\text{GL}_ 2({\mathbb R})\) occurring in the induced representation \(\text{Ind}(\mu,\nu)\) (under unitary induction) with characters \(\mu\), \(\nu\) of \({\mathbb R}^*\) given by \(\mu (t):=| t|^{(k-w- 1)/2}(\text{sgn}\, t)^ k\), \(\nu(t):=| t|^{(-k-w+1)/2}\) for integral \(k\geq 2\) and \(w\equiv k\pmod 2\), all depending on \(v\). For \(d\) even, \(\pi_ v\) is taken to be a special or cuspidal representation of \(\text{GL}_ 2(F_ v)\), for at least one non-Archimedean place \(v\) of \(F\). Let \(\bar F\) be an algebraic closure of \(F\).
The main theorem proved is the following: there exists an algebraic number field \(E\) depending on the given \(\pi\) and a strictly compatible system \(\{\sigma^{\lambda}\}\) of continuous 2-dimensional \(E_{\lambda}\)-adic representations of \(\text{Gal}(\bar F/F)\) such that for every non-Archimedean place \(v\) of \(F\) and \(\lambda\) of \(E\) with residue characteristic different from that of \(v\), the restriction \(\sigma_ v^{\lambda}\) of \(\sigma^{\lambda}\) to the local Weil group \(WF_ v\) is equivalent to \(\sigma^{\lambda}(\pi_ v).\)
What is new here is that the author determines \(\sigma_ v^{\lambda}\) for every non-Archimedean place \(v\) of \(F\). Moreover, according to Ribet, \(\sigma^{\lambda}\) turns out to be irreducible and as such, is characterized entirely.
First, for a weaker version of the main theorem, the author gives a (“geometric”) proof and then he uses ”base change for \(\text{GL}(2)\)” to deduce the main theorem. As a corollary of the main theorem for \(d=1\) and weight \(k=2\), the author shows an affirmative answer to a conjecture on Weil curves over \({\mathbb Q}\).
Reviewer: S. Raghavan

MSC:

11F70 Representation-theoretic methods; automorphic representations over local and global fields
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11G25 Varieties over finite and local fields
11F41 Automorphic forms on \(\mbox{GL}(2)\); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces

References:

[1] A. BOREL et N. WALLACH , Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups (Ann. of Math. Studies, Princeton University Press, 1980 ). MR 83c:22018 | Zbl 0443.22010 · Zbl 0443.22010
[2] H. CARAYOL , Sur la mauvaise réduction des courbes de Shimura (C. R. Acad. Sc., Paris, t. 296, série I, 1983 , p. 557). MR 85c:11050 | Zbl 0599.14019 · Zbl 0599.14019
[3] H. CARAYOL , Sur les représentations l-adiques attachées aux formes modulaires de Hilbert (C. R. Acad. Sc., Paris, t. 296, série I, 1983 , p. 629). MR 85e:11039 | Zbl 0537.10018 · Zbl 0537.10018
[4] H. CARAYOL , Sur la mauvaise réduction des courbes de Shimura [Compositio Math. (à paraître)]. Numdam | Zbl 0607.14021 · Zbl 0607.14021
[5] P. DELIGNE , Formes modulaires et représentations de GL2 , Antwerp II (Lecture Notes, vol. n^\circ 349, Springer-Verlag, 1973 , p. 55-106). MR 50 #240 | Zbl 0271.10032 · Zbl 0271.10032
[6] P. DELIGNE , Lettre à Piatetskii-Shapiro , 1973 .
[7] P. DELIGNE et D. MUMFORD , On the Irreducibility of the Space of Curves of a Given Genus (Publ. Math. I.H.E.S., n^\circ 36, 1968 ). Numdam | Zbl 0181.48803 · Zbl 0181.48803 · doi:10.1007/BF02684599
[8] V. G. DRINFEL’D , Elliptic Modules (Math. U.S.S.R., Sbornik, vol. 23, n^\circ 4, 1974 ). MR 52 #5580 · Zbl 0321.14014
[9] V. G. DRINFEL’D , Coverings of p-Adic Symmetric Regions (Funct. Anal. Appl., vol. 10, 1976 , p. 29). MR 54 #10281 | Zbl 0346.14010 · Zbl 0346.14010 · doi:10.1007/BF01077936
[10] S. GELBART , Automorphic Functions on Adele Groups (Ann. of Math. Studies, n^\circ 83, Princeton Univ. Press, Princeton, 1975 ). MR 52 #280 | Zbl 0329.10018 · Zbl 0329.10018
[11] H. JACQUET et R. P. LANGLANDS , Automorphic Forms on GL (2) (Lecture Notes in Math., vol. n^\circ 114, Springer-Verlag, 1970 ). MR 53 #5481 | Zbl 0236.12010 · Zbl 0236.12010 · doi:10.1007/BFb0058988
[12] H. JACQUET , I. I. PIATETSKII , SHAPIRO et J. SHALIKA , Relèvement cubique non normal (C. R. Acad. Sc., Paris, t. 292, série I, 1981 , p. 567). MR 82i:10035 | Zbl 0475.12017 · Zbl 0475.12017
[13] Ph. KUTZKO , The Local Langlands Conjecture for GL (2) (Ann. of Math., vol. 112, 1980 , p. 381). Zbl 0469.22013 · Zbl 0469.22013 · doi:10.2307/1971151
[14] R. P. LANGLANDS , Modular Forms and l-adic Representations , Antwerp II (Lecture Notes, n^\circ 349, Springer-Verlag, 1973 , p. 361-500). MR 50 #7095 | Zbl 0279.14007 · Zbl 0279.14007 · doi:10.1007/978-3-540-37855-6_6
[15] R. P. LANGLANDS , Base Change for GL (2) (Annals of Math. Studies, Princeton University Press, 1980 ). MR 82a:10032 | Zbl 0444.22007 · Zbl 0444.22007
[16] R. P. LANGLANDS , On the Zeta Functions of Some Simple Shimura Varietes (Canad. J. Math., vol. 31, n^\circ 6, 1979 , p. 1121). Zbl 0444.14016 · Zbl 0444.14016 · doi:10.4153/CJM-1979-102-1
[17] A. P. OGG , Elliptic Curves and Wild Ramification (Amer. J. of Math., vol. 89, 1967 , p. 1-21). MR 34 #7509 | Zbl 0147.39803 · Zbl 0147.39803 · doi:10.2307/2373092
[18] M. OHTA , On the Zeta Function of an Abelian Scheme Over the Shimura Curve (Japan. J. Math., vol. 9, 1983 , p. 1-26). MR 85j:11067 | Zbl 0527.10023 · Zbl 0527.10023
[19] I. I. PIATETSKII-SHAPIRO , Zeta Functions of Modular Curves (Lecture Notes in Math., n^\circ 349, Springer-Verlag, 1973 , p. 317). MR 49 #2744 | Zbl 0308.14004 · Zbl 0308.14004
[20] J. D. ROGAWSKI et J. B. TUNNELL , On Artin L-Functions Associated to Hilbert Modular Forms of Weight One (Inv. Math., vol. 74, 1983 , p. 1-42). MR 85i:11044 | Zbl 0523.12009 · Zbl 0523.12009 · doi:10.1007/BF01388529
[21] J. TATE , Number Theoretic Background, in Automorphic Forms, Representations and L-Functions (Proc. Symp. Pure Math., vol. 33, part. 2, American Mathematical Society, Providence, Rhode Island, 1979 ). Zbl 0422.12007 · Zbl 0422.12007
[22] J. B. TUNNELL , On the Local Langlands Conjecture for GL (2) (Inv. Math., vol. 46, 1978 , p. 179-200). MR 57 #16262 | Zbl 0385.12006 · Zbl 0385.12006 · doi:10.1007/BF01393255
[23] J. B. TUNNELL , Artin’s Conjecture for Representations of Octahedral Type (Bull. Amer. Math. Soc., vol. 5, n^\circ 2, sept. 1981 , p. 173). Article | MR 82j:12015 | Zbl 0475.12016 · Zbl 0475.12016 · doi:10.1090/S0273-0979-1981-14936-3
[24] J. L. WALDSPURGER , Quelques propriétés arithmétiques de certaines formes automorphes sur GL (2) (Compositio Math., vol. 54, n^\circ 2, 1985 , p. 121-171). Numdam | MR 87g:11061a | Zbl 0567.10022 · Zbl 0567.10022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.