×

Shape optimization of elasto-plastic bodies obeying Hencky’s law. (English) Zbl 0616.73081

The paper deals with the shape optimization of two dimensional elasto- plastic bodies obeying Hencky’s law according to the minimum of cost functional. The cost functional is an integral of the yield function. It has been assumed that the body forces, surface loads and material characteristics of an elasto-plastic body are given. To solve the state problem, the principle of Haar-Kármán and piecewise constant stress approximation are used. A convergence analysis of the solution of discrete problem to the solution of the original continuous optimization problem and the existence of an optimal boundary is proved. The paper has a cognizable character, but it is not far from technical applications.
Reviewer: St.Jendo

MSC:

74P99 Optimization problems in solid mechanics
65K10 Numerical optimization and variational techniques
74S05 Finite element methods applied to problems in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
49J40 Variational inequalities
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] D. Bégis R. Glowinski: Application de la méthode des élements finis à l’approximation d’un problème de domaine optimal. Appl. Math. & Optimization, Vol. 2, 1975, 130-169. · Zbl 0323.90063
[2] G. Duvaut J. L. Lions: Les inéquations en mécanique et en physique. Paris, Dunod 1972. · Zbl 0298.73001
[3] R. Falk B. Mercier: Estimation d’erreur en élasto-plasticité. C.R. Acad. Sc. Paris, 282, A, (1976), 645-648. · Zbl 0329.73031
[4] R. Falk B. Mercier: Error estimates for elasto-plastic problems. R.A.I.R.O. Anal. Numer., 11 (1977), 135-144. · Zbl 0357.73062
[5] I. Hlaváček: A finite element analysis for elasto-plastic bodies obeying Hencky’s law. Appl. Mat. 26 (1981), 449-461. · Zbl 0467.73096
[6] B. Mercier: Sur la théorie et l’analyse numérique de problèmes de plasticité. Thesis, Université Paris VI, 1977.
[7] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Praha 1967. · Zbl 1225.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.