Elastic wave propagation in fluid-saturated porous media. II. The Galerkin procedures. (English) Zbl 0616.76105

[For part I see the review above (Zbl 0616.76104).]
The error analysis concerning the continuous and discrete-time Galerkin method is performed, in order to approximate the solution of Biot’s equations describing elastic wave propagation in a bounded saturated porous medium. To obtain this estimates, the method of mixed finite elements is used.
Reviewer: G.Pasa


76S05 Flows in porous media; filtration; seepage
76M99 Basic methods in fluid mechanics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76T99 Multiphase and multicomponent flows
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)


Zbl 0616.76104
Full Text: DOI EuDML


[1] F. BREZZI, J. DOUGLAS Jr. and L. D. MARINI, Two families of Mixed Finite Elements for Second Order Elliptic Problems, Numer. Math. 47 (1985), pp. 217-235. Zbl0599.65072 MR799685 · Zbl 0599.65072
[2] F. BREZZI, J. DOUGLAS Jr. and L. D. MARINI, Recent Results on Mixed Finite Element Methods for Second Order Elliptic Problems, to appear. Zbl0611.65071 MR775499 · Zbl 0611.65071
[3] J. DOUGLAS Jr. and J. E. ROBERTS, Global Estimates for Mixed Methods for Second Order Elliptic Equations, Math. Comp. 44 (1985), pp. 39-52. Zbl0624.65109 MR771029 · Zbl 0624.65109
[4] J. C. NEDELEC, Mixed Finite Elements in R\(^{3}\), Numer. Math. 35 (1980), pp. 315-341. Zbl0419.65069 MR592160 · Zbl 0419.65069
[5] P. A. RAVIART and J. M. THOMAS, A Mixed Finite Element Method for 2nd Order Elliptic Problems, Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics 606, Springer-Verlag, Berlin, 1977. Zbl0362.65089 MR483555 · Zbl 0362.65089
[6] J. E. SANTOS, Elastic Wave Propagation in Fluid-Saturated Porous Media, Part I, The Existence and Uniqueness Theorems, this Journal, vol. 20, N^\circ 1, pp. 113-128, 1986. Zbl0616.76104 MR844519 · Zbl 0616.76104
[7] J. M. THOMAS, Sur l’Analyse Numérique des Méthodes d’Eléments Finis Hybrides et Mixtes, Thèse, Université P. et M. Curie, Paris, 1977.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.