×

Korovkin second theorem via \(B\)-statistical \(A\)-summability. (English) Zbl 1477.41012

Summary: Korovkin type approximation theorems are useful tools to check whether a given sequence \((L_n)_{n \geq 1}\) of positive linear operators on \(C[0, 1]\) of all continuous functions on the real interval \([0, 1]\) is an approximation process. That is, these theorems exhibit a variety of test functions which assure that the approximation property holds on the whole space if it holds for them. Such a property was discovered by Korovkin in 1953 for the functions \(1, x\), and \(x^2\) in the space \(C[0, 1]\) as well as for the functions \(1, \cos\), and \(\sin\) in the space of all continuous \(2\pi\)-periodic functions on the real line. In this paper, we use the notion of \(B\)-statistical \(A\)-summability to prove the Korovkin second approximation theorem. We also study the rate of \(B\)-statistical \(A\)-summability of a sequence of positive linear operators defined from \(C_{2\pi}(\mathbb R)\) into \(C_{2\pi}(\mathbb R)\).

MSC:

41A36 Approximation by positive operators
40A35 Ideal and statistical convergence

References:

[1] Fast, H., Sur la convergence statistique, Colloquium Mathematicum, 2, 241-244 (1951) · Zbl 0044.33605
[2] Mursaleen; Edely, O. H. H., Statistical convergence of double sequences, Journal of Mathematical Analysis and Applications, 288, 1, 223-231 (2003) · Zbl 1032.40001 · doi:10.1016/j.jmaa.2003.08.004
[3] Mohiuddine, S. A.; Alotaibi, A.; Mursaleen, M., Statistical convergence of double sequences in locally solid Riesz spaces, Abstract and Applied Analysis, 2012 (2012) · Zbl 1262.40005 · doi:10.
[4] Freedman, A. R.; Sember, J. J., Densities and summability, Pacific Journal of Mathematics, 95, 2, 293-305 (1981) · Zbl 0504.40002 · doi:10.2140/pjm.1981.95.293
[5] Connor, J., On strong matrix summability with respect to a modulus and statistical convergence, Canadian Mathematical Bulletin. Bulletin Canadien de Mathématiques, 32, 2, 194-198 (1989) · Zbl 0693.40007 · doi:10.4153/CMB-1989-029-3
[6] Kolk, E., Matrix summability of statistically convergent sequences, Analysis, 13, 1-2, 77-83 (1993) · Zbl 0801.40005
[7] Edely, O. H. H.; Mursaleen, M., On statistical \(A\)-summability, Mathematical and Computer Modelling, 49, 3-4, 672-680 (2009) · Zbl 1182.40004 · doi:10.1016/j.mcm.2008.05.053
[8] Mursaleen, M.; Edely, O. H. H., Generalized statistical convergence, Information Sciences, 162, 3-4, 287-294 (2004) · Zbl 1062.40003 · doi:10.1016/j.ins.2003.09.011
[9] Edely, O. H. H., \(B\)-statistically \(A\)-summability · Zbl 1182.40004 · doi:10.1016/j.mcm.2008.05.053
[10] Fridy, J. A.; Orhan, C., Lacunary statistical convergence, Pacific Journal of Mathematics, 160, 1, 43-51 (1993) · Zbl 0794.60012 · doi:10.2140/pjm.1993.160.43
[11] Mursaleen, \( \lambda \)-statistical convergence, Mathematica Slovaca, 50, 1, 111-115 (2000) · Zbl 0953.40002
[12] Móricz, F., Tauberian conditions, under which statistical convergence follows from statistical summability \((C, 1)\), Journal of Mathematical Analysis and Applications, 275, 1, 277-287 (2002) · Zbl 1021.40002 · doi:10.1016/S0022-247X(02)00338-4
[13] Móricz, F., Theorems relating to statistical harmonic summability and ordinary convergence of slowly decreasing or oscillating sequences, Analysis, 24, 2, 127-145 (2004) · Zbl 1051.40006
[14] Móricz, F.; Orhan, C., Tauberian conditions under which statistical convergence follows from statistical summability by weighted means, Studia Scientiarum Mathematicarum Hungarica, 41, 4, 391-403 (2004) · Zbl 1063.40007 · doi:10.1556/SScMath.41.2004.4.3
[15] Korovkin, P. P., On convergence of linear positive operators in the space of continuous functions, Doklady Akademii Nauk, 90, 961-964 (1953) · Zbl 0050.34005
[16] Korovkin, P. P., Linear Operators and Approximation Theory (1960), Delhi, India: Hindustan, Delhi, India · Zbl 0094.10201
[17] Duman, O., Statistical approximation for periodic functions, Demonstratio Mathematica, 36, 4, 873-878 (2003) · Zbl 1065.41041
[18] Karakuş, S.; Demirci, K., Approximation for periodic functions via statistical \(A\)-summability, Acta Mathematica Universitatis Comenianae, 81, 2, 159-169 (2012) · Zbl 1274.40026
[19] Altomare, F., Korovkin-type theorems and approximation by positive linear operators, Surveys in Approximation Theory, 5, 92-164 (2010) · Zbl 1285.41012
[20] Demirci, K.; Dirik, F., Approximation for periodic functions via statistical \(\sigma \)-convergence, Mathematical Communications, 16, 1, 77-84 (2011) · Zbl 1222.41019
[21] Edely, O. H. H.; Mohiuddine, S. A.; Noman, A. K., Korovkin type approximation theorems obtained through generalized statistical convergence, Applied Mathematics Letters, 23, 11, 1382-1387 (2010) · Zbl 1206.40003 · doi:10.1016/j.aml.2010.07.004
[22] Mohiuddine, S. A.; Alotaibi, A.; Mursaleen, M., Statistical summability \((C, 1)\) and a Korovkin type approximation theorem, Journal of Inequalities and Applications, 2012 (2012) · Zbl 1279.41014 · doi:10.1186/1029-242X-2012-172
[23] Mursaleen, M.; Ahmad, R., Korovkin type approximation theorem through statistical lacunary summability · Zbl 1323.40004
[24] Mursaleen, M.; Alotaibi, A., Statistical summability and approximation by de la Vallée-Poussin mean, Erratum: Applied Mathematics Letters, 25, 665 (2012) · Zbl 1216.40003 · doi:10.1016/j.aml.2010.10.014
[25] Mursaleen, M.; Alotaibi, A., Statistical lacunary summability and a Korovkin type approximation theorem, Annali dell’Universitá di Ferrara, 57, 2, 373-381 (2011) · Zbl 1263.40002 · doi:10.1007/s11565-011-0122-8
[26] Mursaleen, M.; Karakaya, V.; Ertürk, M.; Gürsoy, F., Weighted statistical convergence and its application to Korovkin type approximation theorem, Applied Mathematics and Computation, 218, 18, 9132-9137 (2012) · Zbl 1262.40004 · doi:10.1016/j.amc.2012.02.068
[27] Radu, C., \(A\)-summability and approximation of continuous periodic functions, Studia. Universitatis Babeş-Bolyai. Mathematica, 52, 4, 155-161 (2007) · Zbl 1199.41137
[28] Srivastava, H. M.; Mursaleen, M.; Khan, A., Generalized equi-statistical convergence of positive linear operators and associated approximation theorems, Mathematical and Computer Modelling, 55, 9-10, 2040-2051 (2012) · Zbl 1255.41013 · doi:10.1016/j.mcm.2011.12.011
[29] Anastassiou, G. A.; Mursaleen, M.; Mohiuddine, S. A., Some approximation theorems for functions of two variables through almost convergence of double sequences, Journal of Computational Analysis and Applications, 13, 1, 37-46 (2011) · Zbl 1222.41007
[30] Belen, C.; Mursaleen, M.; Yildirim, M., Statistical \(A\)-summability of double sequences and a Korovkin type approximation theorem, Bulletin of the Korean Mathematical Society, 49, 4, 851-861 (2012) · Zbl 1254.40003 · doi:10.4134/BKMS.2012.49.4.851
[31] Demirci, K.; Dirik, F., Four-dimensional matrix transformation and rate of \(A\)-statistical convergence of periodic functions, Mathematical and Computer Modelling, 52, 9-10, 1858-1866 (2010) · Zbl 1205.41017 · doi:10.1016/j.mcm.2010.07.015
[32] Mursaleen, M.; Alotaibi, A., Korovkin type approximation theorem for functions of two variables through statistical \(A\)-summability, Advances in Difference Equations, 2012 (2012) · Zbl 1293.41011 · doi:10.1186/1687-1847-2012-65
[33] Mohiuddine, S. A., An application of almost convergence in approximation theorems, Applied Mathematics Letters, 24, 11, 1856-1860 (2011) · Zbl 1252.41022 · doi:10.1016/j.aml.2011.05.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.