Barbu, Tudor Variational image denoising approach with diffusion porous media flow. (English) Zbl 1425.94007 Abstr. Appl. Anal. 2013, Article ID 856876, 8 p. (2013). Summary: A novel PDE-based image denoising approach is proposed in this paper. One designs here a nonlinear filter for image noise reduction based on the diffusion flow generated by the porous media equation \(\partial u/\partial t = \Delta \beta (u)\), where \(\beta\) is a nonlinear continuous function of the form \(\beta(u) = \lambda u^m, 0 < m < 1\). With respect to standard 2D Gaussian smoothing and some nonlinear PDE-based filters, this one is more efficient to remove noise from degraded images and also to reduce “staircasing” effects and preserve the image edges. Cited in 2 Documents MSC: 94A08 Image processing (compression, reconstruction, etc.) in information and communication theory 76S05 Flows in porous media; filtration; seepage 76M27 Visualization algorithms applied to problems in fluid mechanics × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Jain, A. K., Fundamentals of Digital Image Processing (1989), Englewood Cliffs, NJ, USA: Prentice Hall, Englewood Cliffs, NJ, USA · Zbl 0744.68134 [2] Gonzalez, R.; Woods, R., Digital Image Processing (2001), New York, NY, USA: Prentice Hall, New York, NY, USA [3] Nallaperumal, K.; Selvakumar, R. K.; Arumugaperumal, S.; Annam, S.; Vishwanath, N., Hansa filter: a fuzzy adaptive nonlinear Gaussian filter: an adaptive non local algorithm, International Journal of Imaging and Engineering, 2, 1 (2008) [4] Guichard, F.; Moisan, L.; Morel, J.-M., A review of P.D.E. models in image processing and image analysis, Journal de Physique, 4, 137-154 (2001) [5] Weickert, J., Anisotropic Diffusion in Image Processing. Anisotropic Diffusion in Image Processing, European Consortium for Mathematics in Industry, xii+170 (1998), Stuttgart, Germany: B. G. Teubner, Stuttgart, Germany · Zbl 0886.68131 [6] Alvarez, L.; Berger, M.-O.; Deriche, R.; Herlin, I.; Jaffré, J.; Morel, J.-M., Images and PDE’s, ICAOS ’96 (Paris, 1996). ICAOS ’96 (Paris, 1996), Lecture Notes in Control and Information Sciences, 219, 3-14 (1996), London, UK: Springer, London, UK · Zbl 0851.68115 · doi:10.1007/3-540-76076-8_112 [7] Barbu, T.; Barbu, V., A PDE approach to image restoration problem with observation on a meager domain, Nonlinear Analysis: Real World Applications, 13, 3, 1206-1215 (2012) · Zbl 1239.94005 · doi:10.1016/j.nonrwa.2011.09.014 [8] Barbu, T.; Barbu, V.; Biga, V.; Coca, D., A PDE variational approach to image denoising and restoration, Nonlinear Analysis: Real World Applications, 10, 3, 1351-1361 (2009) · Zbl 1169.35341 · doi:10.1016/j.nonrwa.2008.01.017 [9] Barbu, T., A PDE based model for sonar image and video denoising, AnAlele Stiintifice Ale Universitatii Ovidius, Constanta, Seria Matematica, 19, 3, 51-58 (2011) · Zbl 1274.35394 [10] Perona, P.; Malik, J., Scale-space and edge detection using anisotropic diffusion, Proceedings of IEEE Computer Society Workshop on Computer Vision [11] Catte, F.; Lions, P. L.; Morel, J.-M.; Coll, T., Image selective smoothing and edge detection by nonlinear diffusion, SIAM Journal on Numerical Analysis, 29, 1, 182-193 (1992) · Zbl 0746.65091 [12] Kačur, J.; Mikula, K., Slow and fast diffusion effects in image processing, Computing and Visualization in Science, 13, 4, 185-195 (2001) · Zbl 0971.65085 · doi:10.1007/s007910000047 [13] Barbu, V., Nonlinear Differential Equations of Montone Type in Banach Spaces (2010), New York, NY, USA: Springer, New York, NY, USA · Zbl 1197.35002 [14] Brezis, H.; Zarantonello, E., Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, Contributions to Nonlinear Functional Analysis (1971), New York, NY, USA: Acdemic Press, New York, NY, USA · Zbl 0278.47033 [15] Calder, J.; Mansouri, A.; Yezzi, A., New possibilities in image diffusion and sharpening via high-order Sobolev gradient flows, Journal of Mathematical Imaging and Vision, 40, 3, 248-258 (2011) · Zbl 1255.68215 · doi:10.1007/s10851-010-0250-2 [16] Calder, J.; Mansouri, A.; Yezzi, A., Image sharpening via Sobolev gradient flows, SIAM Journal on Imaging Sciences, 3, 4, 981-1014 (2010) · Zbl 1202.94019 · doi:10.1137/090771260 [17] Jin, Z.; Yang, X., Strong solutions for the generalized Perona-Malik equation for image restoration, Nonlinear Analysis: Theory, Methods and Applications, 73, 4, 1077-1084 (2010) · Zbl 1194.35503 · doi:10.1016/j.na.2010.04.039 [18] Black, M. J.; Sapiro, G.; Marimont, D. H.; Heeger, D., Robust anisotropic diffusion, IEEE Transactions on Image Processing, 7, 3, 421-432 (1998) [19] Weickert, J.; ter Haar Romeny, B. M.; Viergever, M. A., Efficient and reliable schemes for nonlinear diffusion filtering, IEEE Transactions on Image Processing, 7, 3, 398-410 (1998) [20] Kim, S.; Lim, H., A non-convex diffusion model for simultaneous image denoising and edge enhancement, Proceedings of the 6th Mississippi State-UBA Conference on Differential Equations and Computational Simulations, Southwest Texas State Univ. · Zbl 1112.35096 [21] Acton, S. T., Edge enhancement of infrared imagery by way of the anisotropic diffusion pyramid, Proceedings of IEEE International Conference on Image Processing (ICIP ’96) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.