Global rates of convergence of the MLE for multivariate interval censoring. (English) Zbl 1336.62128

Summary: We establish global rates of convergence of the Maximum Likelihood Estimator (MLE) of a multivariate distribution function on \({\mathbb{R}}^{d}\) in the case of (one type of) “interval censored” data. The main finding is that the rate of convergence of the MLE in the Hellinger metric is no worse than \(n^{-1/3}(\log n)^{\gamma}\) for \(\gamma =(5d-4)/6\).


62H12 Estimation in multivariate analysis
62N01 Censored data models
62G07 Density estimation
62G05 Nonparametric estimation
62G20 Asymptotic properties of nonparametric inference
Full Text: DOI arXiv Euclid


[1] Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T. and Silverman, E. (1955). An empirical distribution function for sampling with incomplete information., Ann. Math. Statist. 26 641-647. · Zbl 0066.38502
[2] Balabdaoui, F. and Wellner, J. A. (2012). Chernoff’s density is log-concave. Technical Report No. 512, Department of Statistics, University of Washington. available as, · Zbl 1294.60100
[3] Betensky, R. A. and Finkelstein, D. M. (1999). A non-parametric maximum likelihood estimator for bivariate interval-censored data., Statistics in Medicine 18 3089-3010.
[4] Biau, G. and Devroye, L. (2003). On the risk of estimates for block decreasing densities., J. Multivariate Anal. 86 143-165. · Zbl 1025.62015
[5] Deng, D. and Fang, H.-B. (2009). On nonparametric maximum likelihood estimations of multivariate distribution function based on interval-censored data., Comm. Statist. Theory Methods 38 54-74. · Zbl 1292.62074
[6] Dunson, D. B. and Dinse, G. E. (2002). Bayesian models for multivariate current status data with informative censoring., Biometrics 58 79-88. · Zbl 1209.62031
[7] Gao, F. (2012). Bracketing entropy of high dimensional distributions. Technical Report, Department of Mathematics, University of Idaho. “High Dimensional Probability VI”, to, appear. · Zbl 1270.41006
[8] Gentleman, R. and Vandal, A. C. (2002). Nonparametric estimation of the bivariate CDF for arbitrarily censored data., Canad. J. Statist. 30 557-571. · Zbl 1018.62022
[9] Geskus, R. and Groeneboom, P. (1999). Asymptotically optimal estimation of smooth functionals for interval censoring, case \(2\)., Ann. Statist. 27 627-674. · Zbl 0954.62034
[10] Groeneboom, P. (1987). Asymptotics for interval censored observations. Technical Report No. 87-18, Department of Mathematics, University of, Amsterdam.
[11] Groeneboom, P. (1989). Brownian motion with a parabolic drift and Airy functions., Probab. Theory Related Fields 81 79-109.
[12] Groeneboom, P. (1996). Lectures on inverse problems. In, Lectures on probability theory and statistics (Saint-Flour, 1994) . Lecture Notes in Math. 1648 67-164. Springer, Berlin. · Zbl 0907.62042
[13] Groeneboom, P. (2012a). The bivariate current status model. Technical Report No. ??, Delft Institute of Applied Mathematics, Delft University of Technology. available as, · Zbl 1294.62062
[14] Groeneboom, P. (2012b). Local minimax lower bounds for the bivariate current status model. Technical Report No. ??, Delft Institute of Applied Mathematics, Delft University of Technology. Personal, communication. · Zbl 1253.62034
[15] Groeneboom, P., Maathuis, M. H. and Wellner, J. A. (2008a). Current status data with competing risks: consistency and rates of convergence of the MLE., Ann. Statist. 36 1031-1063. · Zbl 1360.62123
[16] Groeneboom, P., Maathuis, M. H. and Wellner, J. A. (2008b). Current status data with competing risks: limiting distribution of the MLE., Ann. Statist. 36 1064-1089. · Zbl 1216.62047
[17] Groeneboom, P. and Wellner, J. A. (1992)., Information bounds and nonparametric maximum likelihood estimation . DMV Seminar 19 . Birkhäuser Verlag, Basel. · Zbl 0757.62017
[18] Groeneboom, P. and Wellner, J. A. (2001). Computing Chernoff’s distribution., J. Comput. Graph. Statist. 10 388-400. · Zbl 04567029
[19] Jewell, N. P. (2007). Correspondences between regression models for complex binary outcomes and those for structured multivariate survival analyses. In, Advances in statistical modeling and inference . Ser. Biostat. 3 45-64. World Sci. Publ., Hackensack, NJ.
[20] Lin, X. and Wang, L. (2011). Bayesian proportional odds models for analyzing current status data: univariate, clustered, and multivariate., Comm. Statist. Simulation Comput. 40 1171-1181. · Zbl 1227.62015
[21] Maathuis, M. H. (2005). Reduction algorithm for the NPMLE for the distribution function of bivariate interval-censored data., J. Comput. Graph. Statist. 14 352-362.
[22] Maathuis, M. H. (2006)., Nonparametric estimation for current status data with competing risks . ProQuest LLC, Ann Arbor, MI Thesis (Ph.D.)-University of Washington.
[23] Pavlides, M. G. (2008)., Nonparametric estimation of multivariate monotone densities . ProQuest LLC, Ann Arbor, MI Thesis (Ph.D.)-University of Washington.
[24] Pavlides, M. G. (2012). Local asymptotic minimax theory for block-decreasing densities., J. Statist. Plann. Inference 142 2322-2329. · Zbl 1244.62053
[25] Pavlides, M. G. and Wellner, J. A. (2012). Nonparametric estimation of multivariate scale mixtures of uniform densities., J. Multivariate Anal. 107 71-89. · Zbl 1352.62049
[26] Schick, A. and Yu, Q. (2000). Consistency of the GMLE with mixed case interval-censored data., Scand. J. Statist. 27 45-55. · Zbl 0938.62109
[27] Song, S. (2001). Estimation with bivariate interval-censored data. PhD thesis, University of Washington, Department of, Statistics.
[28] Sun, J. (2006)., The Statistical Analysis of Interval-censored Failure Time Data . Statistics for Biology and Health . Springer, New York. · Zbl 1127.62090
[29] van de Geer, S. (1993). Hellinger-consistency of certain nonparametric maximum likelihood estimators., Ann. Statist. 21 14-44. · Zbl 0779.62033
[30] van de Geer, S. A. (2000)., Applications of Empirical Process Theory . Cambridge Series in Statistical and Probabilistic Mathematics 6 . Cambridge University Press, Cambridge. · Zbl 0953.62049
[31] van der Vaart, A. W. and Wellner, J. A. (1996)., Weak Convergence and Empirical Processes . Springer Series in Statistics . Springer-Verlag, New York. · Zbl 0862.60002
[32] Wang, Y.-F. (2009)., Topics on multivariate two-stage current-status data and missing covariates in survival analysis . ProQuest LLC, Ann Arbor, MI Thesis (Ph.D.)-University of California, Davis.
[33] Yu, S., Yu, Q. and Wong, G. Y. C. (2006). Consistency of the generalized MLE of a joint distribution function with multivariate interval-censored data., J. Multivariate Anal. 97 720-732. · Zbl 1333.62129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.