×

zbMATH — the first resource for mathematics

Lemmes de zéros dans les groupes algébriques commutatifs. (Zero theorems in commutative algebraic groups). (French) Zbl 0617.14001
By a zero estimate one understands a minoration for the degrees of all polynomials P vanishing with a given order on some set A; here A is an analytic subgroup of a commutative algebraic group G while P is a homogeneous form viewed as a section of some ample line bundle on some compactification of G. In this paper a new zero estimate is given; it uses translation and derivation operators on G, improving previous results due to D. W. Masser and G. Wüstholz [cf. Invent. Math. 64, 489-516 (1981; Zbl 0467.10025), 72, 407-464 (1983; Zbl 0516.10027) and 80, 233-267 (1985; Zbl 0564.10041)].
Reviewer: A.Buium

MSC:
14A05 Relevant commutative algebra
14L10 Group varieties
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] BERTRAND (D.) . - Lettre à J.-P. Serre, 26 janvier 1985 .
[2] BROWNAWELL (W. D.) . - Zero estimates for solutions of differential equations , dans Approximations diophantiennes et nombres transcendants, Luminy 1982 , Birkhaüser Progress in Math. 31, 1983 , p. 67-94. Zbl 0513.10034 · Zbl 0513.10034
[3] BROWNAWELL (W. D.) and MASSER (D. W.) . - Multiplicity estimates for analytic functions II , Duke Math. Journal, 47, 1980 , p. 273-295. Article | Zbl 0461.10027 · Zbl 0461.10027 · doi:10.1215/S0012-7094-80-04718-3 · eudml:152219
[4] JABBOURI (E. M.) . - Mesures d’indépendance algèbrique de valeurs de fonctions elliptiques et abéliennes , dans Problèmes diophantiens 1985 - 1986 , Pub. Univ. Paris-VI, 1986 , n^\circ 6.
[5] LANGE (H.) . - Families of translations of commutative algebraic groups , à paraître. · Zbl 0657.14026
[6] LASKER (E.) . - Zür Theorie der Moduln und Ideale , Math. Ann., 60, 1905 , p. 20-116. JFM 36.0292.01 · JFM 36.0292.01
[7] MASSER (D. W.) . - On polynomials and exponential polynomials , Inv. Math., 63, 1981 , p. 81-95. Zbl 0436.32005 · Zbl 0436.32005 · doi:10.1007/BF01389194 · eudml:142791
[8] MOREAU (J. C.) . - Démonstration géométrique des lemmes de zéros II , dans Approximations diophantiennes et nombres transcendants, Luminy 1982 , Birkhaüser Progress in Math., 31, 1983 , p. 191-197. MR 86b:11051b | Zbl 0578.10040 · Zbl 0578.10040
[9] MASSER (D. W.) and WÜSTHOLZ (G.) . - Zero estimates on group varieties I , Inv. Math., 64, 1981 , p. 489-516. MR 83d:10040 | Zbl 0467.10025 · Zbl 0467.10025 · doi:10.1007/BF01389279 · eudml:142834
[10] MASSER (D. W.) and WÜSTHOLZ (G.) . - Zero estimates on group varieties II , Inv. Math., 80, 1985 , p. 233-267. MR 86h:11054 | Zbl 0564.10041 · Zbl 0564.10041 · doi:10.1007/BF01388605 · eudml:143229
[11] MASSER (D. W.) and WÜSTHOLZ (G.) . - Fields of large transcendence degree , Inv. Math., 72, 1983 , p. 407-464. Zbl 0516.10027 · Zbl 0516.10027 · doi:10.1007/BF01398396 · eudml:143029
[12] NESTERENKO (Y. V.) . - Estimates for the orders of zeros of fonctions of a certain class and their applications in the theory of transcendental numbers , Izv. Akad. Nauk. SSSR Math., 41, 1977 ; Math USSR Izv., 11, 1977 , p. 239-270. Zbl 0378.10022 · Zbl 0378.10022 · doi:10.1070/IM1977v011n02ABEH001710
[13] NORTHCOTT (D. G.) . - Lessons on rings, modules and multiplicities , Cambridge Univ. Press, 1968 . MR 38 #144 | Zbl 0159.33001 · Zbl 0159.33001
[14] PHILIPPON (P.) . - Pour une théorie de l’indépendance algébrique , Thèse d’État de l’Université de Paris-XI, Juin 1983 .
[15] TUBBS (R.) . - Algebraic groups and small transcendence degree I , à paraître. · Zbl 0608.10036
[16] VAN DER WAERDEN (B. L.) . - On Hilbert’s function, series of composition of ideals and a generalization of the theorem of Bezout , Proc. Royal Acad. Amsterdam 31, 1928 , p. 749-770. JFM 54.0190.02 · JFM 54.0190.02
[17] WÜSTHOLZ (G.) . - Recent progress in transcendence theory , dans Number theory, Noordwijkerhout 1983 , H. JAGER (H.) éd., Springer Lecture Notes in Math., 1068, 1984 , p. 280-296. Zbl 0543.10024 · Zbl 0543.10024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.