zbMATH — the first resource for mathematics

Cohen-Macaulay modules on hypersurface singularities. II. (English) Zbl 0617.14034
This is the subsequent paper of H. Knörrer’s paper with the same title [see the preceding review]. The main object is to prove the converse of Knörrer’s result, namely that a non-simple hypersurface singularity R is of infinite Cohen-Macaulay-representation type, i.e. there are infinitely many isomorphism classes of indecomposable maximal Cohen- Macaulay modules (MCM) over R (see theorem A and B). Moreover the authors classify those (non-isolated) hypersurface singularities \((A_{\infty}\) and \(D_{\infty})\) which are of countable CM-representation type (see theorem B).
An application to vector bundles on projective hypersurfaces with ”no cohomology in the middle” is given (see theorem C).
Reviewer: M.Herrmann

14M05 Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal)
14J17 Singularities of surfaces or higher-dimensional varieties
14B05 Singularities in algebraic geometry
Full Text: DOI EuDML
[1] [ALG] Bourbaki, N.: Algèbre, Chap. X. Paris: Hermann 1980
[2] [Arn] Arnol’d, V.I.: Normal forms for functions near degenerate critical points, the Weyl groups ofA k ,D k ,E k and Lagrangian singularities. Funkts. Anal.6, 254-272 (1972) · Zbl 0278.57011
[3] [A-V] Artin, M., Verdier, J.L.: Reflexive modules over rational double points. Math. Ann.270, 79-82 (1985) · Zbl 0553.14001
[4] [Aus1] Auslander, M.: Rational singularities and almost split sequences. Trans. Am. Math. Soc.293, 511-531 (1986) · Zbl 0594.20030
[5] [Aus2] Auslander, M.: Isolated singularities and almost split sequences. Ottawa Proceedings 1984, SLN
[6] [B-P-V] Barth, W., Peters, C., van de Ven, A.: Compact complex surfaces. Erg. d. Math. Band 4, Berlin-Heidelberg-New York-Tokio: Springer 1984 · Zbl 0718.14023
[7] [Bru] Bruns, W.: The Eisenbud-Evans generalized principal ideal theorem and determinantal ideals. Proc. Am. Math. Soc.83, 19-26 (1981) · Zbl 0478.13006
[8] [Dur] Durfee, A.: Fifteen characterizations of rational double points and simple critical points. L’Enseignement Math.25, 131-163 (1979) · Zbl 0418.14020
[9] [Eis] Eisenbud, D.: Homological Algebra on a complete intersection, with an application to group representations. Trans. Am. Math. Soc.260, 35-64 (1980) · Zbl 0444.13006
[10] [Esn] Esnault, H.: Reflexive modules on quotient singularities. J. Reine Angew. Math. (in press) (1987)
[11] [G-K] Greuel, G.-M., Knörrer, H.: Einfache Kurvensingularitäten und torsionsfreie Moduln. Math. Ann.270, 417-425 (1985) · Zbl 0553.14011
[12] [Kap] Kaplansky, I.: Commutative Rings, Rev. Edition, Univ. of Chicago Press, Chicago, 1974
[13] [K-S] Kiyek, K., Steinke, G.: Einfache Kurvensingularitäten in beliebiger Charakteristik. Arch. Math. (in press) (1987) · Zbl 0553.14012
[14] [K-L] Kleiman, S.L., Landolfi, J.: Geometry and deformation of special Schubert varieties. In: Oort, F. (ed.), Algebraic geometry, Oslo 1970, pp. 97-124. Wolters-Noordhoff Publ. Groningen 1972
[15] [Knö] Knörrer, H.: Cohen-Macaulay modules on hypersurface singularities I. Invent. Math.88, 153-164 (1987) · Zbl 0617.14033
[16] [O-S-S] Okonek, C., Schneider, M., Spindler, H.: Vectorbundles on complex projective spaces. Boston-Basel-Stuttgart: Birkhäuser 1980
[17] [Sch] Schreyer, F.-O.: Finite and countable CM-representation type. To appear in Proc. Symp. on Singularities, Representations of algebra and vector bundles · Zbl 0719.14024
[18] [Sie] Siersma, D.: Isolated line singularities. In: Singularities. Proc. Symp. Pure Math.40, 485-496 (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.