Schwartz, Laurent Semi-martingales à valeurs dans des espaces d’applications \(C^{\infty}\) entre espaces vectoriels. I. (Semi-martingales with values in spaces of \(C^{\infty}\)-maps between vector spaces. I.). (French) Zbl 0617.60050 C. R. Acad. Sci., Paris, Sér. I 305, 31-35 (1987). Let E, F, G be finite dimensional vector spaces, \(\Phi\) a semi-martingale with values in \(C^{\infty}(E;F)\), \(\Psi\) a semi-martingale with values in \(C^{\infty}(F;G)\), X a semi-martingale with values in E. We prove the following three theorems: 1. \(\Phi\) (X) is a semi-martingale with values in F; 2. \(\Phi\circ \Phi\) is a semi-martingale with values in \(C^{\infty}(E;G)\); 3. If \(\Phi\) is inversible, \(\Phi^{-1}\) is a semi-martingale with values in \(C^{\infty}(F;E)\). This theorem 3 will be proved in part II [see the following entry, Zbl 0617.60051]. Cited in 1 Review MSC: 60H10 Stochastic ordinary differential equations (aspects of stochastic analysis) 60G48 Generalizations of martingales 60J60 Diffusion processes Keywords:semi-martingale Citations:Zbl 0617.60051 PDF BibTeX XML Cite \textit{L. Schwartz}, C. R. Acad. Sci., Paris, Sér. I 305, 31--35 (1987; Zbl 0617.60050) OpenURL