Schwartz, Laurent Le théorème \(\Phi ^{-1}\), et les semi-martingales à valeurs dans des espaces d’applications \(C^{\infty}\) entre variétés. II. (The \(\Phi ^{-1}\) theorem, and the semi-martingales with values in spaces of \(C^{\infty}\) maps between manifolds. II.). (French) Zbl 0617.60051 C. R. Acad. Sci., Paris, Sér. I 305, 49-53 (1987). In part I [see the preceding entry, Zbl 0617.60050], we stated three theorems, and proved only the first two. We prove the third one here, and extend the three theorems to the case where the vector spaces E, F, G, are replaced by manifolds U, V, W. Cited in 1 ReviewCited in 1 Document MSC: 60H10 Stochastic ordinary differential equations (aspects of stochastic analysis) 60G48 Generalizations of martingales 58J65 Diffusion processes and stochastic analysis on manifolds Keywords:manifolds Citations:Zbl 0617.60050 PDF BibTeX XML Cite \textit{L. Schwartz}, C. R. Acad. Sci., Paris, Sér. I 305, 49--53 (1987; Zbl 0617.60051) OpenURL