zbMATH — the first resource for mathematics

Bulk transport properties and exponent inequalities for random resistor and flow networks. (English) Zbl 0617.60099
Authors’ abstract: The properties of random resistor and flow networks are studied as a function of the density, p, of bonds which permit transport. It is shown that percolation is sufficient for bulk transport, in the sense that the conductivity and flow capacity are bounded away from zero whenever p exceeds an appropriately defined percolation threshold.
Relations between the transport coefficients and quantities in ordinary percolation are also derived. Assuming critical scaling, these relations imply upper and lower bounds on the conductivity and flow exponents in terms of percolation exponents. The conductivity exponent upper bound so derived saturates in mean field theory.
Reviewer: G.Grimmett

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82C70 Transport processes in time-dependent statistical mechanics
82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)
Full Text: DOI
[1] Ziman, J.M.: J. Phys. C1, 1532 (1968)
[2] Eggarter, T.P., Cohen, M.H.: Phys. Rev. Lett.25, 807 (1970)
[3] Eggarter, T.P., Cohen, M.H.: Phys. Rev. Lett.27, 129 (1971)
[4] Last, B.J., Thouless, D.J.: Phys. Rev. Lett.27, 1719 (1971)
[5] Kirkpatrick, S.: Phys. Rev. Lett.27, 1722 (1971)
[6] Kirkpatrick, S.: Rev. Mod. Phys.45, 574 (1973)
[7] Stinchcombe, R.B.: J. Phys. C6, L1 (1973)
[8] Straley, J.P.: J. Phys. C10, 3009 (1977)
[9] Skal, A.S., Shlovskii, B.I.: Fiz. Tekh. Poluprov.8, 1586 (1974) [Sov. Phys.-Semicond.8, 1029 (1975)]
[10] de Gennes, P.G.: J. Physique Lett.37, L1 (1976)
[11] Harris, A.B., Fisch, R.: Phys. Rev. Lett.77, 796 (1977)
[12] Dasgupta, C., Harris, A.B., Lubensky, T.C.: Phys. Rev. B17, 1375 (1978)
[13] Stephen, M.: Phys. Rev. B17, 4444 (1978)
[14] Wallace, D.J., Young, A.P.: Phys. Rev. B17, 2384 (1978)
[15] Levinstein, M.E., Shur, M.S., Efros, A.L.: Zh. Eksp. Teor. Fiz.69, 2203 (1975) [Sov. Phys. JETP42, 1120 (1975)]
[16] Straley, J.P.: J. Phys. C13, 819 (1980)
[17] Alexander, S., Orbach, P.: J. Physique Lett.43, L625 (1982)
[18] Harris, A.B., Lubensky, T.C.: J. Phys. A16, L365 (1983)
[19] Harris, A.B., Kim, S., Lubensky, T.C.: Phys. Rev. Lett.53, 743 (1984) [see also Rammal, R., Lemieux, M.-A., Trembly, A.-M.S.: Phys. Rev. Lett.54, 1087 (1985)]
[20] Lobb, C.J., Frank, D.J.: Phys. Rev. B30, 4090 (1984)
[21] Straley, J.P.: J. Phys. C15, 2333 (1982)
[22] Hughes, B., Prager, S.: In: Mathematics and physics of disordered media. Lecture Notes in Mathematics, Vol. 1035. Berlin, Heidelberg, New York: Springer 1983
[23] Grimmett, G., Kesten, H.: Z. Wahrscheinlichkeitstheor. Verw. Geb.66, 335 (1984) · Zbl 0525.60098
[24] Kesten, H.: Percolation theory for mathematicians. Boston: Birkhäuser 1982 · Zbl 0522.60097
[25] Aizenman, M., Chayes, J.T., Chayes, L., Fröhlich, J. Russo, L.: Commun. Math. Phys.92, 19 (1983) · Zbl 0529.60099
[26] Chayes, J.T., Chayes, L., Durrett, R.: On the critical behavior of the two-dimensional first passage problem (preprint) · Zbl 0629.60109
[27] Kipnis, C., Varadhan, S.R.S.: Central limit theorem for additive functional of reversible Markov processes and applications to simple exclusions. Commun. Math. Phys. (in press) · Zbl 1316.60112
[28] Papanicolaou, G.C., Varadhan, S.R.S.: In: Colloquia Math. Soc. János Bolyai 27. Random Fields, Estergom (Hungary), p. 835. Amsterdam: North-Holland 1979
[29] Golden, K., Papanicolaou, G.: Commun. Math. Phys.90, 473 (1983)
[30] Kesten, H.: First passage percolation and a higher dimensional generalization (preprint) (1985) · Zbl 0568.60099
[31] Kesten, H.: Surfaces with minimal random weights and maximal flows: A higher dimensional generalization of first passage percolation (preprint) (1985) · Zbl 0568.60099
[32] Kesten, H.: Commun. Math. Phys.74, 41 (1980) · Zbl 0441.60010
[33] Russo, L.: Wahrscheinlichkeitstheor. Verw. Geb.43, 39 (1978) · Zbl 0363.60120
[34] Seymour, P.D., Welsh, D.J.A.: Ann. Discrete Math.3, 227 (1978) · Zbl 0405.60015
[35] Bott, R., Duffin, R.J.: Trans. Am. Math. Soc.74, 99 (1953)
[36] Harris, T.E.: Proc. Camb. Phil. Soc.56, 13 (1960)
[37] Fortuin, C., Kastelyn, P., Ginibre, J.: Commun. Math. Phys.22, 89 (1981) · Zbl 0346.06011
[38] van den Berg, J., Kesten, H.: Inequalities with applications to percolation and reliability (to appear in Adv. Appl. Prob.) · Zbl 0571.60019
[39] Aizenman, M.: Phys. Rev. Lett.54, 839 (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.