# zbMATH — the first resource for mathematics

Spherical means on two-point homogeneous spaces and applications. (English. Russian original) Zbl 1277.43015
Izv. Math. 77, No. 2, 223-252 (2013); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 77, No. 2, 3-34 (2013).
This paper investigates questions of (i) injectivity, (ii) description of the kernel, and (iii) inversion of a class of operators called Pompeiu transforms. More precisely, for $$X$$ a Riemannian two-point homogeneous space and $$g$$ an isometry of $$X$$, one may define the distribution $$g T$$ associated to the compactly supported distribution $$T$$ by $$\langle gT \mid f \rangle = \langle T \mid f \circ g^{-1} \rangle$$. Given a family $$\mathcal{F} = \{ T_i \}_{i=1}^s$$ of such distributions and an open set $$U \subset X$$, if the sets $$\Lambda(U,T_i) = \{ g \in \operatorname{Isom}(X) \mid \operatorname{supp}gT_i \subset U \}$$ are non-empty, one defines $$\mathcal{P}_{\mathcal{F},U}: \mathcal{C}^\infty(U) \to \times_{i=1}^s \mathcal{C}^\infty\big( \Lambda(U,T_i) \big)$$ by $\mathcal{P}_{\mathcal{F},U} (f)(g) = \big( \langle gT_i \mid f \rangle \big)_{i=1}^s.$ This is the Pompeiu transform associated to $$\mathcal{F}$$ and $$\mathcal{U}$$. For example, when $$X = U = \mathbb{S}^2$$ is the two-sphere and $$\mathcal{F}$$ consists only in the superficial delta function of a great circle, $$\mathcal{P}_{\mathcal{F},U}$$ is the Minkowski-Funk transform.
In general, (i)–(iii) are extremely difficult to solve; see [C. A. Berenstein and D. C. Struppa, Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 54 , 5–111 (1989; Zbl 0706.46031)] or [L. Zalcman, NATO ASI Ser., Ser. C 365, 185–194 (1992; Zbl 0830.26005)] among many possible surveys of the problem. For example, Schiffer’s conjecture asserts that, if $$E \subset \mathbb{R}^n$$ has a boundary homeomorphic to a ball, then $$\mathcal{P}_{\{ \chi_E \}, \mathbb{R}^n}$$ is non-injective if and only if $$E$$ is a ball.
In this paper, the authors use new methods to completely solve (i)-(iii) when $$\mathcal{F}= \{ \chi_{B_r}, \chi_{\partial B_r} \}$$ and $$U = B_R$$ where $$B_r$$ is a ball of radius $$r$$ and $$\chi_{\partial B_r}$$ denotes the superficial delta function of the sphere $$\partial B_r$$. Many lemmas are of independent interest and the authors give applications to problems of overdetermined interpolation in the theory of entire functions.
##### MSC:
 43A80 Analysis on other specific Lie groups 53C65 Integral geometry 53C35 Differential geometry of symmetric spaces
Full Text:
##### References:
 [1] С. Хелгасон, Преобразование Радона, Мир, М., 1983 · Zbl 0547.43001 [2] S. Helgason, The Radon transform, Progr. Math., 5, Birkhaüser, Boston, MA, 1980 · Zbl 0453.43011 [3] Ф. Йон, Плоские волны и сферические средние в применении к дифференциальным уравнениям с частными производными, ИЛ, М., 1958 [4] F. John, Plane waves and spherical means applied to partial differential equations, Interscience Publ., New York – London, 1955 · Zbl 0067.32101 [5] К. Беренстейн, Д. Струппа, “Комплексный анализ и уравнения в свертках”, Комплексный анализ. Многие переменные – 5, Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, 54, ВИНИТИ, М., 1989, 5 – 111 · mi.mathnet.ru · www.zentralblatt-math.org [6] C. A. Berenstein, D. C. Struppa, “Complex analysis and convolution equations”, Several complex variables. V. Complex analysis in partial differential equations and mathematical physics, Encyclopaedia Math. Sci., 54, Springer-Verlag, Berlin, 1993, 1 – 108 · Zbl 0787.46032 · www.zentralblatt-math.org [7] L. Zalcman, “A bibliographic survey of the Pompeiu problem”, Approximation by solutions of partial differential equations (Hanstholm, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 365, Kluwer Acad. Publ., Dordrecht, 1992, 185 – 194 · Zbl 0830.26005 · www.zentralblatt-math.org [8] L. Zalcman, “Supplementary bibliography to: ”A bibliographic survey of the Pompeiu problem”, Radon transforms and tomography (South Hadley, MA, 2000), Contemp. Math., 278, Amer. Math. Soc., Providence, RI, 2001, 69 – 74 · Zbl 1129.26300 · doi:10.1090/conm/278/04595 [9] I. Netuka, J. Vesely\', “Mean value property and harmonic functions”, Classical and modern potential theory and applications (Chateau de Bonas, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 430, Kluwer Acad. Publ., Dordrecht, 1994, 359 – 398 · Zbl 0863.31012 [10] В. В. Волчков, Вит. В. Волчков, “Экстремальные задачи интегральной геометрии”, Математика сегодня, 12 (2001), 51 – 79 · Zbl 1014.53045 [11] V. V. Volchkov, Integral geometry and convolution equations, Kluwer Acad. Publ., Dordrecht, 2003 · Zbl 1043.53003 · www.zentralblatt-math.org [12] L. Brown, B. M. Schreiber, B. A. Taylor, “Spectral synthesis and the Pompeiu problem”, Ann. Inst. Fourier (Grenoble), 23:3 (1973), 125 – 154 · Zbl 0265.46044 · doi:10.5802/aif.474 · numdam:AIF_1973__23_3_125_0 · eudml:74135 [13] Вит. В. Волчков, “О функциях с нулевыми шаровыми средними на компактных двухточечно-однородных пространствах”, Матем. сб., 198:4 (2007), 21 – 46 · Zbl 1156.43005 · doi:10.1070/SM2007v198n04ABEH003845 · mi.mathnet.ru [14] Vit. V. Volchkov, “Functions with ball mean values equal to zero on compact two-point homogeneous spaces”, Sb. Math., 198:4 (2007), 465 – 490 · Zbl 1156.43005 · doi:10.1070/SM2007v198n04ABEH003845 [15] В. В. Волчков, “Локальная теорема о двух радиусах на симметрических пространствах”, Матем. сб., 198:11 (2007), 21 – 46 · Zbl 1144.43009 · doi:10.1070/SM2007v198n11ABEH003896 · mi.mathnet.ru [16] V. V. Volchkov, “Local two-radii theorem in symmetric spaces”, Sb. Math., 198:11 (2007), 1553 – 1577 · Zbl 1144.43009 · doi:10.1070/SM2007v198n11ABEH003896 [17] P. Ungar, “Freak theorem about functions on a sphere”, J. London Math. Soc., 29 (1954), 100 – 103 · Zbl 0058.28403 · doi:10.1112/jlms/s1-29.1.100 [18] R. Schneider, “Functions on a sphere with vanishing integrals over certain subspheres”, J. Math. Anal. Appl., 26 (1969), 381 – 384 · Zbl 0167.32703 · doi:10.1016/0022-247X(69)90160-7 [19] L. Zalcman, “Analyticity and the Pompeiu problem”, Arch. Rational Mech. Anal., 47:3 (1972), 237 – 254 · Zbl 0251.30047 · doi:10.1007/BF00250628 [20] J. D. Smith, “Harmonic analysis of scalar and vector fields in $$\mathbb R^n$$”, Proc. Cambridge Philos. Soc., 72:3 (1972), 403 – 416 · Zbl 0247.42021 · doi:10.1017/S0305004100047241 · adsabs.harvard.edu [21] C. A. Berenstein, L. Zalcman, “Pompeiu/s problem on spaces of constant curvature”, J. Analyse Math., 30:1 (1976), 113 – 130 · Zbl 0332.35033 · doi:10.1007/BF02786707 [22] C. A. Berenstein, L. Zalcman, “Pompeiu/s problem on symmetric spaces”, Comment. Math. Helv., 55:1 (1980), 593 – 621 · Zbl 0452.43012 · doi:10.1007/BF02566709 · eudml:139848 [23] C. A. Berenstein, R. Gay, “A local version of the two-circles theorem”, Israel J. Math., 55:3 (1986), 267 – 288 · Zbl 0624.31002 · doi:10.1007/BF02765026 [24] V. V. Volchkov, Vit. V. Volchkov, “New results in integral geometry”, Complex analysis and dynamical systems (Nahariya, Israel, 2003), v. II, Contemp. Math., 382, Amer. Math. Soc., Providence, RI, 2005, 417 – 432 · Zbl 1091.53049 · doi:10.1090/conm/382/07080 [25] C. A. Berenstein, R. Gay, A. Yger, “Inversion of the local Pompeiu transform”, J. Analyse Math., 54:1 (1990), 259 – 287 · Zbl 0723.44002 · doi:10.1007/BF02796152 [26] M. El Harchaoui, “Inversion de la transformation de Pompeíu locale dans les espaces hyperboliques reél et complexe: cas des deux boules”, J. Anal. Math., 67:1 (1995), 1 – 37 · Zbl 0865.32021 · doi:10.1007/BF02787785 [27] M. Berkani, M. El Harchaoui, R. Gay, “Inversion de la transformation de Pompeíu locale dans l/espace hyperbolique quaternionique – cas des deux boules”, Complex Variables Theory Appl., 43:1 (2000), 29 – 57 · Zbl 1037.43013 · doi:10.1080/17476930008815300 [28] Вит. В. Волчков, Н. П. Волчкова, “Обращение локального преобразования Помпейю на кватернионном гиперболическом пространстве”, Докл. РАН, 379:5 (2001), 587 – 590 · Zbl 1041.43005 · mi.mathnet.ru [29] Vit. V. Volchkov, N. P. Volchkova, “Inversion of the local Pompeiu transformation on a quaternionic hyperbolic space”, Dokl. Math., 64:1 (2001), 90 – 93 · Zbl 1041.43005 [30] V. V. Volchkov, Vit. V. Volchkov, Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group, Springer Monogr. Math., Springer-Verlag, London, 2009 · Zbl 1192.43007 · doi:10.1007/978-1-84882-533-8 [31] В. В. Волчков, Вит. В. Волчков, “Уравнения свертки на многомерных областях и редуцированной группе Гейзенберга”, Матем. сб., 199:8 (2008), 29 – 60 · doi:10.4213/sm3945 · mi.mathnet.ru [32] V. V. Volchkov, Vit. V. Volchkov, “Convolution equations in many-dimensional domains and on the Heisenberg reduced group”, Sb. Math., 199:8 (2008), 1139 – 1168 · Zbl 1306.43008 · doi:10.1070/SM2008v199n08ABEH003957 [33] В. В. Волчков, Вит. В. Волчков, “Экстремальные задачи, связанные с теоремой единственности Ф. Йона”, Алгебра и анализ, 21:5 (2009), 37 – 69 · Zbl 1215.46028 · mi.mathnet.ru [34] V. V. Volchkov, Vit. V. Volchkov, “Optimization problems related to the John uniqueness theorem”, St. Petersburg Math. J., 21:5 (2010), 705 – 729 · Zbl 1215.46028 · doi:10.1090/S1061-0022-2010-01113-0 [35] В. В. Волчков, Вит. В. Волчков, “Об одной проблеме Беренстейна – Гэя и ее обобщениях”, Изв. РАН. Сер. матем., 74:4 (2010), 33 – 62 · Zbl 1247.43011 · doi:10.1070/IM2010v074n04ABEH002503 · mi.mathnet.ru [36] V. V. Volchkov, Vit. V. Volchkov, “On a problem of Berenstein – Gay and its generalizations”, Izv. Math., 74:4 (2010), 691 – 721 · Zbl 1247.43011 · doi:10.1070/IM2010v074n04ABEH002503 [37] T. H. Koornwinder, “Jacobi functions and analysis on noncompact semisimple Lie groups”, Special functions: Group theoretical aspects and applications, Math. Appl., Reidel, Dordrecht, 1984, 1 – 85 · Zbl 0584.43010 [38] Г. Бейтмен, А. Эрдейи, Высшие трансцендентные функции, т. 1, 2, Наука, М., 1973 – 1974 · Zbl 0146.09301|0143.29202 · www.ams.org [39] A. Erdeĺyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, vols. I, II, McGraw-Hill, New York – Toronto – London, 1953 · Zbl 0052.29502 [40] П. К. Суетин, Классические ортогональные многочлены, Наука, М., 1976 · Zbl 0449.33001 [41] С. Хелгасон, Группы и геометрический анализ, Мир, М., 1987 [42] S. Helgason, Groups and geometric analysis, Pure Appl. Math., 113, Academic Press, Orlando, FL, 1984 · Zbl 0543.58001 [43] S. Helgason, Geometric analysis on symmetric spaces, Math. Surveys Monogr., 39, Amer. Math. Soc., Providence, RI, 1994 · Zbl 0809.53057 [44] С. Хелгасон, Дифференциальная геометрия и симметрические пространства, Мир, М., 1964 · Zbl 0122.39901 [45] S. Helgason, Differential geometry and symmetric spaces, Pure Appl. Math., 12, Academic Press, New York – London, 1962 · Zbl 0111.18101 [46] Л. Хe\"рмандер, Анализ линейных дифференциальных операторов с частными производными, т. 1, Мир, М., 1986 · Zbl 0619.35001 [47] L. Ho\"rmander, The analysis of linear partial differential operators, v. 1, Grundlehren Math. Wiss., 256, Springer-Verlag, Berlin, 1983 · Zbl 0521.35001 [48] В. В. Волчков, “Решение проблемы носителя для некоторых классов функций”, Матем. сб., 188:9 (1997), 13 – 30 · Zbl 0924.53042 · doi:10.1070/SM1997v188n09ABEH000255 · mi.mathnet.ru [49] V. V. Volchkov, “Solution of the support problem for several function classes”, Sb. Math., 188:9 (1997), 1279 – 1294 · Zbl 0924.53042 · doi:10.1070/SM1997v188n09ABEH000255 [50] Н. Я. Виленкин, А. У. Климык, “Представления групп Ли и специальные функции”, Некоммутативный гармонический анализ – 2, Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, 59, ВИНИТИ, М., 1990, 145 – 264 · Zbl 0727.22007 · mi.mathnet.ru [51] A. U. Klimyk, N. Ya. Vilenkin, “Representations of Lie groups and special functions”, Representation theory and noncommutative harmonic analysis. II, Encyclopaedia Math. Sci., 59, Springer-Verlag, Berlin, 1995, 137 – 259 · Zbl 0818.22008 [52] Э. Я. Риекстыньш, Асимптотические разложения интегралов, т. I, Зинатне, Рига, 1974 · www.zentralblatt-math.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.