×

zbMATH — the first resource for mathematics

Issues and challenges in orbital-free density functional calculations. (English) Zbl 1268.65088
Summary: Solving the Euler equation which corresponds to the energy minimum of a density functional expressed in orbital-free form involves related but distinct computational challenges. One is the choice between all-electron and pseudopotential calculations and, if the latter, construction of the pseudopotential. Another is the stability, speed, and accuracy of solution algorithms. Underlying both is the fundamental issue of satisfactory quality of the approximate functionals (kinetic energy and exchange-correlation). We address both computational issues and illustrate them by some comparative performance testing of our recently developed modified-conjoint generalized gradient approximation kinetic energy functionals. Comparisons are given for atoms, diatomic molecules, and some simple solids.
MSC:
65K10 Numerical optimization and variational techniques
49J20 Existence theories for optimal control problems involving partial differential equations
49M25 Discrete approximations in optimal control
49S05 Variational principles of physics (should also be assigned at least one other classification number in Section 49-XX)
82-08 Computational methods (statistical mechanics) (MSC2010)
Software:
PROFESS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Wang, Y.A.; Carter, E.A., (), 117, (Chapter 5) and references therein
[2] Ludeña, E.V.; Karasiev, V.V., (), 612
[3] Zhou, B.-J.; Wang, Y.A., J. chem. phys., 124, 081107, (2006)
[4] García-Aldea, D.; Alvarellos, J.E., Phys. rev. A, J. chem. phys., 127, 144109, (2007), and references in both
[5] Perdew, J.P.; Constantin, L.A., Phys. rev. B, 75, 155109, (2007)
[6] Garcia-Cervera, C.J., Commun. computat. phys., 3, 968, (2008)
[7] Ghiringhelli, L.M.; Delle Site, L., Phys. rev. B, 77, 073104, (2008)
[8] Eek, W.; Nordholm, S., Theoret. chem. accounts, 115, 266, (2006)
[9] Karasiev, V.V.; Trickey, S.B.; Harris, F.E., J. comp.-aided mater. des., 13, 111, (2006)
[10] Karasiev, V.V.; Jones, R.S.; Trickey, S.B.; Harris, F.E., Phys. rev. B, 80, 245120, (2009)
[11] Trickey, S.B.; Karasiev, V.V.; Jones, R.S., Int. J. quantum chem., 109, 2943, (2009)
[12] Huang, C.; Carter, E.A., Phys. rev. B, 81, 045206, (2010), [15 pp]
[13] Hohenberg, P.; Kohn, W., Phys. rev., 136, B864, (1964)
[14] R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford, New York, 1989.
[15] Dreizler, R.M.; Gross, E.K.U., Density functional theory, (1990), Springer-Verlag Berlin
[16] Kryachko, E.S.; Ludeña, E.V., Energy density functional theory of many-electron systems, (1990), Kluwer Dordrecht
[17] Eschrig, H., The fundamentals of density functional theory, (1996), Teubner Stuttgart · Zbl 0868.46052
[18] Talman, J.D.; Shadwick, W.F.; Gritsenko, O.; van Leeuwen, R.; van Lenthe, E.; Baerends, E.J.; Ivanov, S.; Hirata, S.; Bartlett, R.J.; Görling, A., Phys. rev. A, Phys. rev. A, Phys. rev. lett., Phys. rev. lett., 83, 5459, (1999)
[19] von Weizsäcker, C.F., Z. phys., 96, 431, (1935)
[20] Tal, Y.; Bader, R.F.W., Int. J. quantum chem., S12, 153, (1978)
[21] Bartolotti, L.J.; Acharya, P.K., J. chem. phys., 77, 4576, (1982)
[22] Harriman, J.E., (), 359
[23] Levy, M.; Ou-Yang, H., Phys. rev. A, 38, 625, (1988)
[24] Deb, B.M.; Ghosh, S.K., Int. J. quantum chem., 23, 1, (1983)
[25] Levy, M.; Perdew, J.P.; Sahni, V., Phys. rev. A, 30, 2745, (1984), and references therein
[26] Kin-Lic Chan, G.; Cohen, A.J.; Handy, N.C., J. chem. phys., 114, 631, (2001)
[27] Ho, G.S.; Lignères, V.L.; Carter, E.A., Comput. phys. commun., 179, 839, (2008)
[28] Hung, L.; Huang, C.; Shin, I.; Ho, G.S.; Lignères, V.L.; Carter, E.A., Comput. phys. commun., 181, 2208, (2010)
[29] Thomas, L.H., Proc. Cambridge phil. soc., 23, 542, (1927)
[30] Fermi, E., Atti accad. nazl. lincei, 6, 602, (1927)
[31] Lieb, E.H., Rev. mod. phys., 53, 603, (1981)
[32] Tomishima, Y.; Yonei, K., J. phys. soc. jpn., 21, 142, (1966)
[33] Yang, W., Phys. rev. A, 34, 4575, (1986)
[34] Tran, F.; Wesolowski, T.A., Int. J. quantum chem., 89, 441, (2002)
[35] Perdew, J.P.; Burke, K.; Ernzerhof, M., Phys. rev. lett., Phys. rev. lett., 78, 1396, (1997), (erratum)
[36] Boettger, J.C., Phys. rev. B, 57, 8743, (1998)
[37] Trickey, S.B.; Alford, J.A.; Boettger, J.C., (), 171-228
[38] Kobus, J.; Laaksonen, L.; Sundholm, D., Comput. phys. commun., 98, 346, (1996)
[39] Ayers, P.W.; Liu, S., Phys. rev. A, 75, 022514, (2007)
[40] Vosko, S.H.; Wilk, L.; Nusair, M., Can. J. phys., 58, 1200, (1980)
[41] Kato, T., Commun. pure appl. math., 10, 151, (1957)
[42] Bingel, W.A., Z. naturforschung A, 18, 1249, (1963)
[43] Pack, R.T.; Brown, W.B., J. chem. phys., 45, 556, (1966)
[44] March, N.H.; Howard, I.A.; Holas, A.; Senet, P.; Van Doren, V.E., Phys. rev. A, 63, 012520, (2000)
[45] Wang, L.-W.; Teter, M.P., Phys. rev. B, 45, 13196, (1992)
[46] Wang, Y.A.; Govind, N.; Carter, E.A., Phys. rev. B, 58, 13465, (1998)
[47] Gilbert, T.L., Phys. rev. B, 12, 2111, (1975)
[48] Shaw, R.W., Phys. rev., 174, 769, (1968)
[49] Topp, W.C.; Hopfield, J.J., Phys. rev. B, 7, 1295, (1973)
[50] Heine, V.; Abarenkov, I.V., Phil. mag., 9, 451, (1964)
[51] Goodwin, L.; Needs, R.J.; Heine, V., J. phys.: condens. matter, 2, 351, (1990)
[52] Fiolhais, C.; Perdew, J.P.; Armster, S.Q.; MacLaren, J.M.; Brajczewska, M., Phys. rev. B, 51, 14001, (1995)
[53] Costa Cabral, B.J.; Martins, J.L., Phys. rev. B, 51, 872, (1995)
[54] Zhou, B.; Wang, Y.A.; Carter, E.A., Phys. rev. B, 69, 12509, (2004)
[55] Watson, S.; Jesson, B.J.; Carter, E.A.; Madden, P.A., Europhys. lett., 41, 37, (1998)
[56] Huang, C.; Carter, E.A., Phys. chem. chem. phys., 10, 7109, (2008)
[57] van Leeuwen, R.; Baerends, E.J., Phys. rev. A, 49, 2421, (1994)
[58] Gritsenko, O.V.; van Leeuwen, R.; Baerends, E.J., Phys. rev. A, 52, 1870, (1995)
[59] Iterative Procedure to Determine Kohn-Sham Potentials from a Given Density: Application to All-electron and Pseudo-densities, V.V. Karasiev, S.B. Trickey, and F.E. Harris, (2007, unpublished).
[60] Soler, J.M.; Artacho, E.; Gale, J.D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D., J. phys.: condens. matter, 14, 2745, (2002), Spanish Initiative for Electronic Simulations with Thousands of Atoms (SIESTA); Version 2.0. See also
[61] Perdew, J.P.; Zunger, A., Phys. rev. B, 23, 5048, (1981)
[62] Gonze, X.; Amadon, B.; Anglade, P.-M.; Beuken, J.-M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Cote, M.; Deutsch, T.; Genovese, L.; Ghosez, Ph.; Giantomassi, M.; Goedecker, S.; Hamann, D.R.; Hermet, P.; Jollet, F.; Jomard, G.; Leroux, S.; Mancini, M.; Mazevet, S.; Oliveira, M.J.T.; Onida, G.; Pouillon, Y.; Rangel, T.; Rignanese, G.-M.; Sangalli, D.; Shaltaf, R.; Torrent, M.; Verstraete, M.J.; Zerah, G.; Zwanziger, J.W.; Gonze, X.; Rignanese, G.-M.; Verstraete, M.; Beuken, J.-M.; Pouillon, Y.; Caracas, R.; Jollet, F.; Torrent, M.; Zerah, G.; Mikami, M.; Ghosez, Ph.; Veithen, M.; Raty, J.-Y.; Olevano, V.; Bruneval, F.; Reining, L.; Godby, R.; Onida, G.; Hamann, D.R.; Allan, D.C., Computer phys. commun., Zeit. kristallogr., 220, 558, (2005)
[63] Kresse, G.; Furthmüller, J., Comput. mater. sci., 6, 4136, (1996), Vienna ab initio simulation package (\scVasp, Version 4.6. See also
[64] Pseudopotentials are taken from the Siesta repository of translated norm-conserving Troullier-Martins pseudopotentials from the Fritz-Haber-Institute.
[65] Troullier, N.; Martins, J.L., Phys. rev. B, 43, 1993, (1991)
[66] Alchagirov, A.B.; Perdew, J.P.; Boettger, J.C.; Albers, R.C.; Fiolhais, C., Phys. rev. B, 63, 224115, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.