×

Finite time singularities for Lagrangian mean curvature flow. (English) Zbl 1315.53074

The main result of the paper is as follows: let \(M\) be a Calabi-Yau manifold of real dimension 4 and \(\Sigma\) an embedded Lagrangian in \(M\). Then there exists a Lagrangian \(L\) which is Hamiltonian isotopic to \(\Sigma\) and so that the Lagrangian mean curvature flow with initial condition \(L\) has a finite time singularity. This disproves a conjecture of Mu-Tao Wang which is a weaker version of a conjecture of Thomas-Yau concerning long time existence (and convergence) of Lagrangian mean curvature flow satisfying a condition of stability.

MSC:

53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
53D12 Lagrangian submanifolds; Maslov index
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] H. Anciaux, ”Construction of Lagrangian self-similar solutions to the mean curvature flow in \(\mathbb C^n\),” Geom. Dedicata, vol. 120, pp. 37-48, 2006. · Zbl 1098.35074
[2] S. Angenent, ”Parabolic equations for curves on surfaces. I. Curves with \(p\)-integrable curvature,” Ann. of Math., vol. 132, iss. 3, pp. 451-483, 1990. · Zbl 0789.58070
[3] S. Angenent, ”Parabolic equations for curves on surfaces. II. Intersections, blow-up and generalized solutions,” Ann. of Math., vol. 133, iss. 1, pp. 171-215, 1991. · Zbl 0749.58054
[4] Y. Eliashberg and L. Polterovich, ”Local Lagrangian \(2\)-knots are trivial,” Ann. of Math., vol. 144, iss. 1, pp. 61-76, 1996. · Zbl 0872.57030
[5] M. A. Grayson, ”Shortening embedded curves,” Ann. of Math., vol. 129, iss. 1, pp. 71-111, 1989. · Zbl 0686.53036
[6] G. Huisken, ”Asymptotic behavior for singularities of the mean curvature flow,” J. Differential Geom., vol. 31, iss. 1, pp. 285-299, 1990. · Zbl 0694.53005
[7] T. Ilmanen, ”Elliptic regularization and partial regularity for motion by mean curvature,” Mem. Amer. Math. Soc., vol. 108, iss. 520, p. x, 1994. · Zbl 0798.35066
[8] T. Ilmanen, Singularities of Mean Curvature Flow of Surfaces. · Zbl 0759.53035
[9] A. Neves, ”Singularities of Lagrangian mean curvature flow: zero-Maslov class case,” Invent. Math., vol. 168, iss. 3, pp. 449-484, 2007. · Zbl 1119.53052
[10] A. Neves and G. Tian, Translating solutions to Lagrangian mean curvature flow. · Zbl 1282.53057
[11] J. A. Oaks, ”Singularities and self intersections of curves evolving on surfaces,” Indiana Univ. Math. J., vol. 43, iss. 3, pp. 959-981, 1994. · Zbl 0835.53048
[12] R. Schoen and J. Wolfson, ”Minimizing area among Lagrangian surfaces: the mapping problem,” J. Differential Geom., vol. 58, iss. 1, pp. 1-86, 2001. · Zbl 1052.53056
[13] R. Schoen and J. Wolfson, Mean curvature flow and Lagrangian embeddings. · Zbl 1031.53112
[14] L. Simon, Lectures on Geometric Measure Theory, Canberra: Australian National University Centre for Mathematical Analysis, 1983, vol. 3. · Zbl 0546.49019
[15] K. Smoczyk, A canonical way to deform a Lagrangian submanifold.
[16] R. P. Thomas and S. -T. Yau, ”Special Lagrangians, stable bundles and mean curvature flow,” Comm. Anal. Geom., vol. 10, iss. 5, pp. 1075-1113, 2002. · Zbl 1115.53054
[17] M. Wang, ”Mean curvature flow of surfaces in Einstein four-manifolds,” J. Differential Geom., vol. 57, iss. 2, pp. 301-338, 2001. · Zbl 1035.53094
[18] M. Wang, ”Some recent developments in Lagrangian mean curvature flows,” in Surveys in Differential Geometry. Vol. XII. Geometric Flows, Int. Press, Somerville, MA, 2008, vol. 12, pp. 333-347. · Zbl 1169.53052
[19] B. White, ”A local regularity theorem for mean curvature flow,” Ann. of Math., vol. 161, iss. 3, pp. 1487-1519, 2005. · Zbl 1091.53045
[20] J. Wolfson, ”Lagrangian homology classes without regular minimizers,” J. Differential Geom., vol. 71, iss. 2, pp. 307-313, 2005. · Zbl 1097.53052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.