zbMATH — the first resource for mathematics

Formulation variationnelle espace-temps pour le calcul par potentiel retardé de la diffraction d’une onde acoustique. I. (French) Zbl 0618.35069
The paper discusses the properties of the so-called ”first kind” integral equation associated to the simple layer retarded potential: \[ sp(t,x):=(1/4\pi)\int_{\Gamma}(p(t-(x-y),y)/(x-y))d\sigma_ y=g(t,x) \] where \(\Gamma\) is a closed surface in \({\mathbb{R}}^ 3\), \((t,x)\in {\mathbb{R}}_+\times \Gamma.\)
By a Fourier-Laplace transform technique, the authors prove an existence and uniqueness theorem for this equation in a convenient space-time functional framework, and show a variational formulation to the equation with a coercive bilinear form. This enables them to propose new numerical schemes for the equation, based on the Galerkin method. They show that, with well chosen basis functions, the schemes are explicit and of the marching-in-time type, conserving the convolution character of the operator. It seems that those are the first schemes on boundary transient integral equations which are mathematically analysed.
In a companion paper [ibid. 8, 598-608 (1986)] the integral equation associated to the double layer retarded potential for the resolution of a Neumann scattering problem is also dealt with in the same techniques. The results of these papers are since improved into a finite-time framework by the second author (to appear).

35L20 Initial-boundary value problems for second-order hyperbolic equations
76Q05 Hydro- and aero-acoustics
35A15 Variational methods applied to PDEs
45A05 Linear integral equations
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
Full Text: DOI
[1] Bennett, Time domain integral equation solution for acoustic scattering from fluid targets, JASA 59 (5) pp 1261– (1981) · Zbl 0473.76066 · doi:10.1121/1.385808
[2] Bennett, Time domain electromagnetics and its applications, Proc. I. E. E. E. 66 (3) pp 299– (1978)
[3] Cole, A numerical boundary integral equation method for elastodynamics I, Bull. Seism. Soc. Am. 68 (5) pp 1331– (1978)
[4] Herma, Scattering of transient acoustic waves by an inhomogeneous obstacle, JASA 69 (4) pp 909– (1981) · Zbl 0454.73019 · doi:10.1121/1.385612
[5] Herman, Scattering of transient elastic waves by an inhomogeneous obstacle: contrast in volume density of mass, JASA 71 (1) pp 264– (1982) · Zbl 0489.73030 · doi:10.1121/1.387450
[6] Mitzner, Numerical solution of transient scattering from a hard surface of arbitrary shape - retarded potential technique, JASA 42 (2) pp 391– (1967) · Zbl 0149.45903 · doi:10.1121/1.1910590
[7] Parot , J. M. Pages , J. M. Verpeau , P. Calcul des surpressions exercées par une onde acoustique aérienne sur des structures réfléchissantes. Note technique DEMT/SMTS/LAMS 83 35
[8] Shaw, Developpements in boundary element Methods (1979)
[9] Shaw, Transient acoustic scattering by a free (pressure release) sphere, J. Sound and Vibration 20 (3) pp 321– (1972) · Zbl 0233.76181 · doi:10.1016/0022-460X(72)90613-X
[10] Giroire , J. Integral equation methods for extension problems for the Helmholtz Equation. Rapport interne n\(\deg\) 40 1978 · Zbl 0479.65059
[11] Nedelec , J. C. Approximation des équations intégrales en mécanique et en physique. Cours de l’Ecole d’Eté d’Analyse Numérique EDF-CEA-INRIA 1977
[12] Nedelec, Une méthode variationnelle d’éléments finis pour la résolution numérique d’un problème extérieur dans R3, R. A. I. R. O. R3 (7) pp 105– (1973)
[13] Charazain, Introduction à la théorie des équations aux dérivées partielles (1981)
[14] Lebeau , G. Schatzman , M. A wave problem in a half-space with a one-sided constraint at the boundary. 1982 · Zbl 0559.35043
[15] Lions, Problèmes aux limites non homogènes et applications 1 pp 2– (1968)
[16] Miyatake, Mixed problems for hyperbolic equations of second order, J. Math. Kyote University 13 pp 435– (1973) · Zbl 0281.35052
[17] Sakamoto, Mixed problems for hyperbolic equations I, II, J. Math. Kyoto University 10 pp 349– (1970) · Zbl 0203.10001
[18] Treves, Basic linear partial differential equations (1975) · Zbl 0305.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.