zbMATH — the first resource for mathematics

Additional symmetries for integrable equations and conformal algebra representation. (English) Zbl 0618.35107
We present a regular procedure for constructing an infinite set of additional (spacetime variables explicitly dependent) symmetries of integrable nonlinear evolution equations (INEEs). In our method, additional symmetry equations arise together with their L-A pairs, so that they are integrable themselves. This procedure is based on a modified ’dressing’ method. For INEEs in \(1+1\) dimensions, some appropriate symmetry equations are shown to form the vector fields on a circle \(S^ 1\) algebra representation. In contrast to the so-called isospectral deformations, these symmetries result from conformal transformations of the associated linear problem spectrum. For INEEs in \(2+1\) dimensions, the commutation relations for symmetry equations are shown to coincide with operators \(\lambda^ m\partial_{\lambda}\), with integer m,p. Some additional results about Kac-Moody algebra applications are presented.

35Q99 Partial differential equations of mathematical physics and other areas of application
35A30 Geometric theory, characteristics, transformations in context of PDEs
35G20 Nonlinear higher-order PDEs
Full Text: DOI
[1] Zakharov, V. E., Manakov, S. V., Novikov, S. P., and Pitaevskii, L. P., Soliton Theory, Nauka, Moscow, 1980.
[2] Ibragimov, N. H. and Shabat, A. B., Dokl. Ac. Sci. USSR 244 1 (1979).
[3] Chen, H. H., Lee, Y. C., and Lin, J. E., Physica, 9D, 439 (1983).
[4] Zakharov, V. E. and Shabat, A. B., Funk. Anal. Priloz. 13, 13 (1979).
[5] Zakharov, V. E. and Shabat, A. B., Funk. Anal. Priloz. 8, 3 (1974).
[6] Magri, F., in Lecture Notes in Physics 120, 233 (1980).
[7] Adler, M., Inv. Math. 50, 219 (1979); Kostant, B., Lond. Math. Soc. Lect. Notes 34 (1979). Flashka, H., Newell, A. C., and Ratiu, T., Physica, 9D, 300 (1983); Reiman, A. G., Semionov-Tian Shanskii, Notes Sci. Sem. LOMI 123, 217, Nauka, Leningrad, 1984. · Zbl 0393.35058 · doi:10.1007/BF01410079
[8] Jimbo, M., Kashivara, M., and Miwa, T., J. Phys. Soc. Japan 50, 3806 (1981); Flashka, H. and Newell, A. C., Commun. Math. Phys. 76, 65 (1980). · Zbl 0571.35099 · doi:10.1143/JPSJ.50.3806
[9] Orlov, A. Yu. and Schulman, E. I., Preprints IA and E No. 217 (1984); No. 277 (1985); Teor. Mat. Fiz. 64, 323 (1985).
[10] Ablowitz, M. J., Kaup, D. J., Newell, A. C., and Segur, H., Stud. Appl. Math. 53, 249 (1974).
[11] Belinski, V. A. and Zakharov, V. E., ZETPh 75, 1953 (1978).
[12] Case, K. M., J. Math. Phys. 26, 1158 (1985). · Zbl 0563.35073 · doi:10.1063/1.526516
[13] Calogero, F. and Degasperis, A., Lett. Nuovo Cim. 22, 420 (1978). · doi:10.1007/BF02856160
[14] Alonso, M., J. Math. Phys. 23, 15 (1982).
[15] Gelfand, I. M. and Dikii, L. A., Russ. Math. Surveys 30 (5), 77 (1975). · Zbl 0334.58007 · doi:10.1070/RM1975v030n05ABEH001522
[16] Fuchssteiner, B., in Lecture Notes in Physics 216, 305 (1985); Schwarz, F., J. Phys. Soc. Japan 51, 2387 (1982).
[17] Date, E., Jimbo, M., Kashiwara, M., Miwa, T., in M. Jimbo and T. Miwa (eds.), Non-linear Integrable Systems ? Classical Theory and Quantum Theory, Kyoto, Japan, 1983, pp. 41-119. · Zbl 0571.35104
[18] Zakharov, V. E. and Manakov, S. V., Funk. Anal. Priloz. 19, 11 (1985).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.