×

Extended thermodynamics of ideal gases with 14 fields. (English) Zbl 0618.76075

An extended thermodynamic theory of nonrelativistic gases is formulated as a theory of 14 fields. Reference is made with respect to the 13-fields theory previously proposed by I.-S. Liu and I. Müller [Arch. Ration. Mech. Anal. 83, 285-332 (1983; Zbl 0554.76014)]. The relevant linear fields equations are derived, and explicit results are shown for the classical ideal gas and for degenerate cases of the Bose and Fermi type.
Reviewer: V.C.Boffi

MSC:

76N15 Gas dynamics (general theory)
82B40 Kinetic theory of gases in equilibrium statistical mechanics

Citations:

Zbl 0554.76014
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] I-Shih Liu , I. Müller , Extended Thermodynamics of Classical and Degenerate Ideal Gases . Arch. Rat. Mech. Anal. , t. 83 , 1983 , p. 285 - 332 . MR 714978 | Zbl 0554.76014 · Zbl 0554.76014
[2] I-Shih Liu , I. Müller , T. Ruggeri , Relativistic Thermodynamics of Gases . Annals of Physics , t. 169 , 1986 . MR 846050
[3] W. Dreyer , W. Weiss , The Classical Limit of Relativistic Extended Thermodynamics , Ann. I. H. P. (Phys. Theor.) , t. 45 , 1986 , p. 401 - 418 . Numdam | MR 880745 | Zbl 0614.76124 · Zbl 0614.76124
[4] I. Müller , Thermodynamics . Pitman Publ ., London , 1985 . Zbl 0637.73002 · Zbl 0637.73002
[5] I-Shih Liu , Method of Lagrange Multipliers for Exploitation of the Entropy Principle , Arch. Rat. Mech. Anal. , t. 46 , 1972 , p. 131 - 148 . MR 337164 | Zbl 0252.76003 · Zbl 0252.76003
[6] K. Huang , Statistical Mechanics . John Wiley , New York , 1963 . MR 154659
[7] G.M. Kremer , Zur erweiterten Thermodynamik idealer und dichter Gase . Dissertation TU Berlin , 1985 .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.